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We have studied the quantum oscillations of the conductance for arrays of connected mesoscopic metallic
rings, in the presence of an external magnetic field. Several geometries have been considered: a linear array of
rings connected with short or long wires compared to the phase coherence length, square networks, and hollow
cylinders. Compared to the well-known case of the isolated ring, we show that for connected rings, the winding
of the Brownian trajectories around the rings is modified, leading to a different harmonics content of the
quantum oscillations. We relate this harmonics content to the distribution of winding numbers. We consider the
limits where coherence length L� is small or large compared to the perimeter L of each ring constituting the
network. In the latter case, the coherent diffusive trajectories explore a region larger than L, whence a network-
dependent harmonics content. Our analysis is based on the calculation of the spectral determinant of the
diffusion equation for which we have a simple expression on any network. It is also based on the hypothesis
that the time dependence of the dephasing between diffusive trajectories can be described by an exponential
decay with a single characteristic time �� �model A�. At low temperature, decoherence is limited by electron-
electron interaction, and can be modeled in a one-electron picture by the fluctuating electric field created by
other electrons �model B�. It is described by a functional of the trajectories and thus the dependence on
geometry is crucial. Expressions for the magnetoconductance oscillations are derived within this model and
compared to the results of model A. It is shown that they involve several temperature-dependent length scales.
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I. INTRODUCTION

Understanding which processes limit phase coherence in
electronic transport is an important issue in mesoscopic
physics. Such phenomena such as weak localization or uni-
versal conductance fluctuations are well understood to result
from phase coherence effects limited at a given time �or
length� scale called phase coherence time �� �or phase coher-
ent length L��. This explains the interest in studying quantum
corrections to the classical conductivity: to provide a power-
ful experimental probe of phase coherence in weakly disor-
dered metals and furnish some informations on the micro-
scopic mechanisms responsible for the limitation of quantum
coherence. This limitation originates from the coupling of
electrons to external degrees of freedom such as magnetic
impurities or phonons.1,2 It also results from the interaction
among electrons themselves. The physical origin of this de-
coherence in weakly disordered metals has been understood
in the pioneering paper of Altshuler, Aronov, and Khmel-
nitskii �AAK�.3 In a one electron picture, it is due to the
fluctuations of the electric field created by the other elec-
trons. In a quasi-one-dimensional �1D� wire, these authors
showed that this mechanism leads to the following tempera-
ture dependence of the dephasing time ���T��T−2/3. This
power law can be understood qualitatively as follows: the
typical dephasing is proportional to the fluctuations of the
electric potential, which themselves are known from Nyquist
theorem to be proportional to the temperature T and to the
resistance of the sample. For an infinite wire, the relevant
fluctuations are limited to the scale of the coherence length
itself. Consequently, the dephasing time has the structure:
� /��=kBT /g�L��, where g�L�� is the dimensionless conduc-

tance at the length scale L�. For a quasi-1D conductor, the
conductance is linear in length and the length scales as the
square root of time. Therefore the function g�L�� scales as
���, whence the above power law.

More recently, Ludwig and Mirlin4 and two of the
authors5 considered the geometry of a ring, and they showed
that the damping of magnetoresistance oscillations could be
described with a different temperature dependence of the
dephasing time ���T��T−1. This new behavior can be quali-
tatively understood by considering that the diffusive trajec-
tories encircle the ring and all have a length equal to the
perimeter L of the ring, so that the relevant resistance is the
resistance of the ring itself. As a result: � /��=kBT /g�L�.

In Ref. 5 we have shown how the dephasing on a ring
depends on the nature of the diffusive trajectories: the fluc-
tuations of the electric potential affect differently trajectories
which encircle the ring and trajectories which do not encircle
it. Within this framework, we have analyzed magnetoresis-
tance experiments performed on a square network of
quasi-1D wires, and we have found that indeed two charac-
teristic lengths with two different temperature dependences
could be extracted from the data.6 These recent consider-
ations have led us to the general conclusion that the dephas-
ing depends on the geometry of the system considered.

The purpose of this paper is to analyze the dephasing
process and to calculate the weak localization correction in
different geometries, where the decoherence induced by
electron-electron interaction may have a more complex
structure. In order to address this question, it is important to
understand that the weak localization correction depends on
two ingredients: one is the probability to have pairs of re-
versed trajectories, which is related to the return probability
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P�t� for a diffusive particle after a time t, the other is the
nature of the dephasing process itself. Schematically, the
weak localization correction to the conductivity can be writ-
ten as

�� � − �
0

�

dt P�t��ei	�t�� , �1�

where �ei	�t�� is the average dephasing accumulated along a
diffusive trajectory for a time t. The return probability has
been analyzed in Ref. 7 for various types of networks. Its
Laplace transform, the spectral determinant, can be simply
calculated from the parameters of the network. More com-
plex is the analysis of the dephasing process itself. A simple
and natural ansatz would be to assume an exponential decay
�ei	�t��=e−t/��. This assumption is correct when the dephasing
is due to random magnetic impurities or electron-phonon
scattering. For electron-electron interaction the analysis of
the AAK result for a wire shows that time dependence is not
exponential:8 �ei	�t��ee�e−t/��. The qualitative reason stands
again on the fact that dephasing can be described as due to
the fluctuations of the electric potential due to other elec-
trons. Then, one may understand that this dephasing depends
on the nature of the trajectories and is not exponential. The
main goal of this paper is to describe this dephasing for
complex networks and to generalize the known results of the
infinite wire and the ring.

The paper is organized as follows: In Sec. II, we recall the
physical basis at the origin of this work and in Sec. III we
present the general formalism appropriate for our study. In
the next sections, we consider successively more and more
complex geometries. In Sec. IV, we recall known results for
the infinite wire and the ring. In Sec. V, we consider the case
of a ring attached to arms and show how the harmonics of
the magnetoresistance oscillations are reduced by the exis-
tence of the arms. The situation is the same for a chain of
rings connected through arms longer than the coherence
length. When rings become close to each other the dephasing
in one ring is strongly modified by the winding trajectories in
the neighboring rings. This is discussed in Sec. VI. The case
of an infinite regular network is much more difficult to ad-
dress since the hierarchy of diffusive trajectories is difficult
to analyze, and we have used the limit of the infinite plane as
a guideline �Sec. VII�. Finally the case of a hollow cylinder
�Sec. VIII� is quite interesting since it combines trajectories
winding around the axis of the cylinder and two-dimensional
�2D� trajectories. Throughout the paper, we shall consider
two situations, respectively, denoted by model A and model
B: the case where the dephasing has a simple exponential
time dependence, and the case where the dephasing is in-
duced by electron-electron interaction. We shall systemati-
cally discuss the analogies and the differences between these
two situations.

II. BACKGROUND

In a weakly disordered metal, due to elastic scattering
by impurities, the classical conductivity reaches a finite
value at low temperature, given by the Drude conductivity

�0=ne2�e /m, where n is the electronic density and �e is the
elastic scattering time. Quantum interferences are respon-
sible for small quantum corrections to the Drude result. One
important contribution, which survives averaging over the
disorder,9–11 comes from interferences of reversed closed
electronic trajectories, and therefore diminishes the conduc-
tivity. This quantum contribution to the average conductivity
is called the weak localization �WL� correction. It has been
expressed as Eq. �1�, where the function �ei	�t�� describes
dephasing and cut off the large time contributions. A simple
exponential decay �ei	�t��=e−t/�� is usually assumed �denoted
model A in the present paper�. �� is the phase coherence
time, related to the phase coherence length L�=�D��, where
D is the diffusion constant of electrons in the disordered
metal. From Eq. �1�, we obtain the WL correction in a
wire ���1D��−��e

�� dt
�t

�−����−L� and in a plane ���2D�

�−��e

�� dt
t �−ln��� /�e� �diffusion sets in after a time �e, hence

the lower cutoff in the integrals�. In practice, the WL is a
small correction to the Drude conductivity and it can be ex-
tracted thanks to its sensitivity to a magnetic field. In the
presence of a magnetic field, the contribution of a closed
diffusive trajectory C is multiplied by e2ie
C/�, where 
C is
the magnetic flux through the loop. This phase factor comes
from the interference of the two reversed electronic trajecto-
ries, whence the factor 2. After summation over all loops, the
additional magnetic phase is responsible for the vanishing of
the contributions of loops such that 
C�
0, where 
0
=h /e is the flux quantum. Therefore the magnetic field pro-
vides an additional cutoff at time �B corresponding to diffu-
sive trajectories encircling one flux quantum. In a narrow
wire of width w we have �B

�1D��
0
2 / �Dw2B2� and in a thin

film �plane� �B
�2D��
0 / �DB� �see Refs. 1 and 2�. The two

cutoffs are added “à la Matthiessen”12,13 as 1 /��→1 /��

+1 /�B; this leads to a smooth dependence of the WL correc-
tion as a function of the magnetic field.

The above discussion concerns homogeneous devices
�like a wire or a plane�. Another experimental setup appro-
priate to study quantum interferences and extract the phase
coherence length is a metallic ring or an array of rings. In
this case the topology constrains the magnetic flux inter-
cepted by the rings to be an integer multiple of the flux per
ring 
 �we neglect for the moment the penetration of the
magnetic field in the wires�: 
C=n
 with n�Z. This gives
rise to Aharonov-Bohm �AB� oscillations of the conductance
as a function of the flux with period 
0. Disorder averaging
is responsible for the vanishing of these 
0-periodic oscilla-
tions: only survive the contributions of the reversed elec-
tronic trajectories leading to WL correction oscillations,
known as Al’tshuler-Aronov-Spivak �AAS� oscillations,14,15

with a period half of the flux quantum. It will be convenient
to introduce the harmonics ��n of the periodic WL correc-
tion. An important motivation for considering the harmonic
content ��n in networks, is that it allows to decouple the two
effects of the magnetic field:16 the rapid AAS oscillations
���n�0� and the penetration of the magnetic field in the
wires, responsible for a smooth decrease in the MC at large
field ���0�. Since the nth harmonic is given by contributions
of loops encircling n fluxes we can write

TEXIER, DELPLACE, AND MONTAMBAUX PHYSICAL REVIEW B 80, 205413 �2009�

205413-2



��n = −
2e2D

�s
�

0

�

dt Pn�t�e−t/��, �2�

where Pn�t� is the return probability after a time t having
encircled n fluxes. s is the cross section of the wires. In an
isolated ring of perimeter L, this probability reads Pn

ring�t�
= 1

�4�Dt
exp− �nL�2

4Dt . Integral �2� gives14

��n
AAS = −

2e2

hs
L�e−	n	L/L�, �3�

where L�=�D�� is the phase coherence length. Note that
��−n=��n follows from the symmetry under reversing the
magnetic field; in the following we will simply consider n

0. The exponential decay of the harmonics directly origi-
nates from the diffusive nature of the winding around the
ring: for a time t���, the typical winding scales as nt

��Dt /L�L� /L. The AAS oscillations were first observed
in narrow metallic hollow cylinders17,18 and in large metallic
networks.15,19,20

Although the simple behavior �3� has been used to ana-
lyze AAS or AB oscillations21 in many experiments until
recently �see, for example, Refs. 10 and 22�, a realistic de-
scription of a network made of connected rings leads to har-
monics with a L /L� dependence, a priori quite different from
the simple exponential prediction �3� for two reasons related
to the nontrivial topology of the networks.

�i� Winding properties of diffusive loops in networks. Con-
sider for example the square network of Fig. 1 made of rings
of perimeter L=4a. For L��L, an electron unlikely keeps its
phase coherence around a ring; therefore AAS oscillations
are dominated by trajectories enlacing one ring only and all
rings can be considered as independent. In the opposite
regime23 L��L, the interfering electronic trajectories ex-
plore regions much larger than the ring perimeter L. In this
case, winding properties are more complicated �Fig. 1� and
the probability Pn�t� may strongly differ from the one ob-
tained for a single ring Pn

ring�t�. A theory must be developed
to account for these topological effects, which leads to an
harmonic content quite different from Eq. �3�. This was done
in Refs. 25–29 for large regular networks. This theory was
later extended in Ref. 30 in order to deal with arbitrary

networks, properly accounting for their connections to
contacts.31

�ii� e-e interaction leads to geometry-dependent decoher-
ence. Not only the winding probability Pn�t� involved in Eq.
�2� is affected by the nontrivial topology of networks, but
also �ei	�t��=e−t/�� describing the nature of phase coherence
relaxation is replaced by a more complex function. When
decoherence is due to e-e interaction, the dominant phase-
breaking mechanism at low temperature, this relaxation is
not described by a simple exponential anymore. This situa-
tion will be referred as model B throughout this paper. Such
decoherence can be modeled in a one-electron picture by
including dephasing due to the fluctuating electromagnetic
field created by the other electrons.3 Therefore the pair of
reversed interfering trajectories picks up an additional phase
	
C� that depends on the electric potential V. Averaging over
the fluctuations of the potential leads to the relaxation of
phase coherence. The harmonics present the structure

��n � − �
0

�

dt Pn�t��ei	
Ct
n��V,Ct

n, �4�

where averaging is taken over the potential fluctuations
�¯ �V and over the loops with winding n for time t, �¯ �Ct

n.
In a quasi-1D wire, the relaxation of phase coherence in-
volves an important length scale, the Nyquist length LN, char-
acterizing the efficiency of the electron-electron interaction
to destroy the phase coherence in the wire. We will see that,
in networks also, the Nyquist length is the intrinsic length
characterizing decoherence due to e-e interaction. It is given
by3,33–36

LN = ��2�0Ds

e2kBT

1/3

= ��d

�
Nc�eLT

2
1/3
, �5�

where s is the cross section of the wire. We have rewritten
the Nyquist length in terms of the thermal length LT

=��D /kBT, the elastic mean-free path �e, and the number of
conducting channels Nc �not including spin degeneracy�; �d
is a dimensionless constant depending on the dimension
��d=Vd /Vd−1, where Vd is the volume of the unit sphere in
dimension d�.37 In the following we will set �=kB=1. In the
infinite wire, the decaying function �ei	�V,Ct

can only involve
the unique length LN. A precise analysis of the magnetocon-
ductance �MC� of the wire shows that, in this case, the cal-
culation of Eqs. �2� and �4� for the infinite wire, for which
P�t��1 /�t, leads to almost indistinguishable results
provided2,41 L�→�2LN. Therefore the analysis of the MC of
the wire suggests that the sophisticated calculation of Eq. �4�
can be replaced by the simpler one �2� with e−t/��→e−t/2�N,
where �N=LN

2 /D�T−2/3 is the Nyquist time. However this is
a priori not true anymore as soon as we consider networks
with a nontrivial topology because electric potential fluctua-
tions depend on the geometry, and therefore the decoherence
is geometry dependent.

Let us formulate this idea more precisely. Being related to
the potential as 	��tV, fluctuations of the phase 	 picked
by the two reversed electronic trajectories can be related to
the power spectrum of the potential, given by the fluctuation-
dissipation theorem: d

dt �	
2�V,Ct

�e2TRt�
e2T
�0sx�t�, where

φ

w
a

w

b

FIG. 1. �Color online� A square metallic network submitted to a
magnetic field. Schematic picture of a closed diffusive trajectory
winding a flux 2
 is represented �
 is the flux per elementary
plaquette�.
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Rt=x�t� / ��0s� is the resistance of a wire of length x�t�. The
average �¯ �V,Ct

is taken over potential fluctuations and
closed diffusive trajectories Ct for a time scale t. The length
x�t� is the typical length probed by electronic trajectories.
For an infinite wire it scales like x�t���Dt; therefore
�	2�V,Ct

��t /�N�3/2, where �N=LN
2 /D�T−2/3 is the Nyquist

time. On the other hand, in a ring, diffusion is constrained by
the geometry: harmonics of the MC of a ring involve wind-
ing trajectories for which the length scale probed is therefore
the perimeter x�t��L, leading to �	2�V,Ct

��t /�c�, where �c

�T−1. Therefore, in a ring, depending on their winding, tra-
jectories probe different length scales: LN�T−1/3 or Lc
�T−1/2.

Let us summarize. At the level of Eqs. �2� and �3�, L� is a
phenomenological parameter put by hand. The modelization
of decoherence due to e-e interaction of AAK shows that, in
an infinite wire, the WL correction probes the Nyquist length
LN�T−1/3 �the only length scale of the problem�. This shows
that, in the MC of the infinite wire, the phenomenological
parameter L� must be replaced by L�→LN�T−1/3. On the
other hand the MC of a ring involves a new length scale
Lc=LN

3/2 /L1/2 combination of the Nyquist length and the pe-
rimeter. In this case, assuming the simple AAS behavior
��n�e−nL/L�, the phenomenological parameter should be
substituted by L�→Lc�T−1/2.

Geometry-dependent decoherence in ballistic rings. It is
worth pointing out that such a geometry-dependent decoher-
ence can also be observed in ballistic systems: potential fluc-
tuations responsible for decoherence depend on the precise
distribution of currents inside the device, which are affected
by the way the current is injected through different
contacts.42 Depending whether the measurement is local or
nonlocal, different phase coherence lengths have been ex-
tracted from the damping of AB oscillations.43 The different
�� are probed by changing the contact configuration �current/
voltage probes�,44 whereas in the diffusive ring, the different
length scales are probed by considering different harmonics.

III. GENERAL FORMALISM

We first recall the basic formalism and apply precisely the
ideas given in the introduction. We will consider the reduced
conductivity �̃, defined by

� =
2e2

hs
�̃ , �6�

where s is the cross section of the wire. The reduced WL
correction has the dimension of a length. As mentioned
above, it is a sum of contributions of interfering closed re-
versed electronic trajectories, which can be conveniently
written as a path integral,

��̃�x� � − 2Pc�x,x�

= − 2�
0

�

dt�
x�0�=x

x�t�=x

Dx���exp�−�
0

t

d��1

4
ẋ2 + 2ieẋA�x�
�

�ei	
x����. �7�

Pc�x ,x� is the so-called Cooperon. Summation over diffusive

paths for time t involves the Wiener measure
Dx���exp−�0

t d� 1
4 ẋ2 �we have performed a change in variable

t→ t /D so that “time” has now the dimension of a squared
length�. Each loop receives a phase proportional to the mag-
netic flux 2�0

t d�ẋA�x� intercepted by the reversed interfering
trajectories, where A�x� is the vector potential. The factor 2
originates from the fact that the Cooperon measures interfer-
ence between two closed electronic trajectories undergoing
the same sequence of scattering events in a reversed order.
Finally we have introduced an additional phase 	
x���� to
account for dephasing: dephasing due to penetration of the
magnetic field in the wires12 or decoherence due to electron-
electron interaction. In this latter case the phase 	 depends
also on the environment dynamics over which one should
average.

The x dependence of ��̃�x� in Eq. (7). In a general net-
work, in the absence of translational invariance, the WL cor-
rection to the conductance was shown to be given by an
integration of ��̃�x� over the network, with some nontrivial
weights attributed to the wires. Let us write the classical
dimensionless conductance as gclass=�dNc�e /L, where the
effective length L is obtained from addition �Kirchhoff� laws
of classical resistances �dimensionless parameter �d was de-
fined above: �3=4 /3, �2=� /2, and �1=2�. Then the WL
correction to the conductance is30

�g =
1

L2�
i

�L
�li
�

wire i

dx ��̃�x� , �8�

where the summation runs over all wires of the networks and
li is the length of the wire i. Equation �8� was demonstrated
in Ref. 30 for the conductance matrix elements of multiter-
minal networks with arbitrary topology. This result relies on
a careful discussion of current conservation �derivation of
current conserving quantum corrections can be found in
Refs. 45–48�. This point will play a relatively minor role in
the present paper. Equation �8� may be used in order to cal-
culate geometry-dependent prefactors.

Magnetoconductance oscillations and winding properties.
In an array of metallic rings of same perimeter, the magnetic
flux is an integer multiple of the flux 
 per ring
�0

t d� ẋA�x�=
�N
x����, where N
x�����Z is the winding
number of the closed trajectory �the number of fluxes en-
circled�. This makes the WL correction a periodic function of
the flux 
=�


0

4� , where 
0=h /e. The nth harmonic of the
MC

��̃n = �
0

2� d�

2�
��̃���e−in� �9�

involves trajectories with winding number n. We can write
the harmonics as

��̃n�x� � − 2Pc
�n��x,x� = − 2�

0

�

dt

� �
x�0�=x

x�t�=x

Dx����n,N
x���� exp�− �
0

t

d�
1

4
ẋ2
ei	
x����,

�10�

where the Kronecker symbol selects only trajectories for a
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given winding number n. Let us introduce the probability for
a diffusive particle to return to its starting point after a time
t, with the condition of winding n fluxes,

Pn�x,x;t� = �
x�0�=x

x�t�=x

Dx����n,N
x���� exp�− �
0

t

d�
1

4
ẋ2
 .

�11�

For example, in an isolated ring of perimeter L, this prob-
ability is simply given by

Pn
ring�x,x;t� =

1
�4�t

e−�nL�2/4t. �12�

Then, we can rewrite the harmonics as

��̃n�x� = − 2�
0

�

dt Pn�x,x;t��ei	
Ct
n��Ct

n, �13�

which is the structure given in Eq. �4�. In Eq. �13� we have
introduced the notation Ct

n��x��� ,�� 
0, t� 	x�0�=x�t�
=x ;N
x����=n� for a closed diffusive path winding n times.
�¯ �Ct

n designates averaging over all such paths, with the
measure of the path integral �11�. The phase 	
C� accounts
for dephasing and eliminates the contributions of diffusing
trajectories at large time. We now discuss two possible mod-
elizations for this function, denoted by “A” and “B.”

A. Model A: exponential relaxation

The simplest choice is an exponential relaxation, with a
dephasing rate �=1 /��=1 /L�

2 ,

�ei	
Ct��Ct
= e−�t. �14�

This simple prescription correctly describes dephasing due to
spin-orbit coupling, magnetic impurities,13,49 effect of pen-
etration of the magnetic field in the wires,12 or decoherence
due to electron-phonon scattering.1,50 Using Eqs. �12� and
�13� with this exponential decay yields the familiar result �3�
for the isolated ring.

B. Model B: geometry-dependent decoherence from
electron-electron interaction

It turns out that the simple exponential relaxation does not
describe correctly the decoherence due to electron-electron
interaction, the physical reason being that this decoherence is
due to electromagnetic field fluctuations that depend on the
geometry of the system. AAK have proposed a microscopic
description3,33 that we can rephrase as follows. In Eq. �7�,
the phase 	 picked up by the reversed trajectories depends
on the environment �the potential V created by the
other electrons due to electron-electron interaction�:
	V
Ct�=�0

t d� 
V(x��� ,�)−V(x��� , t−�)�. Averaging over the
Gaussian fluctuations of V leads to �ei	V
Ct��V=e−1/2�	V
Ct�

2�V,
where the fluctuation-dissipation theorem �written for ��T
describing classical fluctuations� �V�r , t�V�r� , t���V

� e2T
�0

��t− t��Pd�r ,r�� gives 1
2 �	V
Ct�2�V=�
Ct�t with52

�
Ct� t =
2

LN
3 �

0

t

d� W„x���,x�t − ��… , �15�

�
Ct� t =
kBT

�

2�

RK
�

0

t

d� R„x���,x�t − ��… , �16�

where RK=h /e2 is the quantum of resistance. The function
W�x ,x�� is related to the diffusion, solution of −�Pd�x ,x��
=��x−x��, by

W�x,x�� =
Pd�x,x� + Pd�x�,x��

2
− Pd�x,x�� . �17�

This function has a physical interpretation discussed in Ap-
pendix E: it is proportional to the equivalent resistance
R�x ,x�� between the points x and x� �Fig. 21�. With this
remark, we see that Eq. �16� can be understood as a local
version of the Johnson-Nyquist theorem relating the potential
fluctuations to the resistance.

In Eqs. �15� and �16� we have introduced a decoherence
rate �
Ct�, which depends not only on the time but on the
trajectory itself. Therefore the decay of phase coherence is
now described by

�ei	V
Ct��V,Ct
= �e−�
Ct�t�Ct

. �18�

Within this framework, relaxation of phase coherence is not
described by a simple exponential decay like in Eq. �14� but
is controlled by a functional of the trajectories54 x���. There-
fore the nature of decoherence depends on the network,
through the resistance R�x ,x�� between x and x�, and on the
winding properties of the trajectories.

The central problem of the present paper is to compute the
path integral

��̃n�x� = − 2�
0

�

dt e−�t�
x�0�=x

x�t�=x

Dx����n,N
x����

� exp�− �
0

t

d��1

4
ẋ2 +

2

LN
3 W„x���,x�t − ��…�


�19�

for the different networks. Such a calculation has been al-
ready performed in two cases: the infinite wire3 and the iso-
lated ring.4,5

The logic of the following sections is the following: first
we study the winding properties in the network. For that
purpose we first compute the WL correction ��̃n

�A� within
model A, Eq. �13� with Eq. �14�. The probability Pn�x ,x ; t�
can be extracted from an inverse Laplace transform with re-
spect to the parameter �. Having fully characterized the
winding properties, we use this information in order to study
the harmonics ��̃n

�B� within model B describing decoher-
ence due to electron-electron interaction, Eq. �13� with
Eq. �18�.

IV. WIRE AND THE RING

We first recall known results within the framework of
model B concerning the simplest geometries that will be use-
ful for the following.
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A. Phase coherence relaxation in an infinite wire

The case of an infinite wire was originally solved in Ref.
3. In this case we have Wwire�x ,x��= 1

2 	x−x�	 and the path
integral

��̃ = − 2�
0

�

dte−�t�
x�0�=x

x�t�=x

Dx���

�exp�− �
0

t

d��1

4
ẋ2 +

1

LN
3 	x��� − x�t − ��	�
 �20�

can be computed thanks to translational invariance 
as
pointed out in Ref. 62, using the symmetry of the path inte-
gral we can perform the substitution x���−x�t−��→x���,
provided that the starting point of the path integral is set to
x→0, see Appendix A�. Combining exponential relaxation
�model A� and decoherence due to e-e interaction �model B�
allows to extract the function �18� with an inverse Laplace
transform of the AAK result,3,33,35,2

��̃ = − �
0

� dt
��t

e−�t�ei	V
Ct��V,Ct
, �21�

��̃ = LN

Ai��LN
2 �

Ai���LN
2 �

, �22�

where Ai�z� is the Airy function.63 As mentioned above, this
expression is very close to2,41 ��̃�−� 1

L�
2 + 1

2LN
2 �−1/2, the result

obtained by performing the substitution �ei	V
Ct��V,Ct

→e−t/2LN
2

�see Fig. 2�.
The inverse Laplace transform of Eq. �21� was computed

in Ref. 8 with residue’s theorem,

fwire�t/�N� = �ei	V
Ct��V,Ct
, �23�

fwire�t/�N� =��t

�N
�
m=1

�
1

	um	
e−	um	t/�N, �24�

where um are zeros of Ai��z�. In particular u1�−1.019 and
um�−
 3�

2 �m− 3
4 ��2/3 for m→�. The limiting behaviors are

fwire�t/�N� � 1 −
��

4
� t

�N

3/2

for t � �N, �25�

fwire�t/�N� �
1

	u1	
��t

�N
e−	u1	t/�N for �N � t . �26�

Note that the short time behavior can be obtained by expand-
ing f�t /�N�= �ei	�V,Ct

= �e−1/2�	2�V�Ct
�1− 1

2 �	V
Ct�2�V,Ct
. This

limit can be simply obtained by noticing that in the
wire W(x��� ,x�t−��)�x�����t; therefore �
Ct�t�Tt3/2

��t /�N�3/2 where we recover that the Nyquist time scales as
�N�T−2/3.

B. Phase coherence relaxation in the isolated ring

For the isolated ring of perimeter L, we have
Wring�x ,x��= 1

2 	x−x�	�1− 	x−x�	
L �. The path integral �19� can be

computed exactly5 �see Appendix A�. Up to a dimensionless
prefactor, we obtain

��̃n � − LNe−��/8�n�L/LN�3/2
for LN � L , �27�

��̃n � − T−1/3e−nL3/2T1/2
. �28�

This result can be simply understood as follows: in the ring,
trajectories with finite winding necessarily explore the whole
ring. This “ergodicity” implies that W(x��� ,x�t−��)�x���
�L and therefore the decoherence rate �
Ct�t�TLt� t /�c
involves the different time scale �c�1 / �TL�, according to
the physical argument given in Sec. II. As a consequence Eq.
�13� indeed leads to4

��̃n � − LNe−��/8�nL/Lc, �29�

where

Lc =
LN

3/2

L1/2 . �30�

Phase coherence length: L��T−1/3 or L��T−1/2? Note that
the introduction of a new length scale4 Lc might appear ar-
bitrary since the harmonics may be written uniquely in
terms5 of L and LN. The difference between Eqs. �27� and
�29� is a matter of convention and may be related to the
experimental procedure. The usual method extracts the phase
coherence length from the analysis of MC harmonics. Then it
is natural to see how the winding number n scales with the
phase coherence length, or more properly how the length nL
scales with L� and therefore assume the form ��̃n
� f�nL /L��. From Eq. �29� we see that the function is simply
the exponential, f�x�=e−x, with a perimeter-dependent phase
coherence length L�→Lc� �TL�−1/2. Another procedure may
consist in studying the harmonics content as a function of the
perimeter L, that is, for different samples. The experiment is

� � � � � �

L
N
/L

B

�

���

�

���

� � � � � �
�����

�����

�

����

����

FIG. 2. �Color online� Comparison between −Ai�x2� /Ai��x2�
�black continuous line� and 1 /�1 /2+x2 �red dashed line�. Relative
difference �inset� does not exceed 4%.

TEXIER, DELPLACE, AND MONTAMBAUX PHYSICAL REVIEW B 80, 205413 �2009�

205413-6



then analyzed with the form ��̃n� fn�L /L��. Equation �27�
gives fn�x�=e−nx3/2

with the geometry-independent phase co-
herence length L�→LN�T−1/3.

The temperature dependence ��n�e−L3/2T1/2
was first pre-

dicted in Ref. 4 using instanton method �with a different
pre-exponential dependence� and studied in details in Ref. 5,
where the path integral �19� was computed exactly for the
isolated ring.64 The effect of the connecting arms was clari-
fied in Ref. 65. The fact that the pre-exponential factor is LN
is related to the fact that the smooth part of the MC, due to
the penetration of the field in the wire, probes the same
length scale as in the infinite wire.

It is worth pointing out the recent work53 in which the
crossover to the zero-dimensional limit is studied in a ring
weakly connected. In this case the authors get a crossover
from ���T−1 �diffusive ring� to ���T−2 �ergodic� for tem-
perature below the Thouless energy. This latter behavior co-
incides with the result known for quantum dots in the same
regime.66

C. Penetration of the magnetic field in the wires of the ring

Networks are made of wires of finite width w. The pen-
etration of the magnetic field in the wires is responsible for
fluctuations of the magnetic flux enclosed by trajectories
with the same winding number but different areas. In the
weak magnetic field limit, this effect is described by intro-
ducing an effective dephasing rate12

� → 1/LB
2 =

1

3
� eBw

�

2

. �31�

The question of how to combine the two decoherence
mechanisms �models A and B� in the ring was discussed in
Ref. 5. It was shown that the WL correction of the ring
presents the structure

��̃n � LN

Ai�LN
2 /LB

2 �
Ai��LN

2 /LB
2 �

e−nL/L�
osc�Lc,LB� �32�

for LN�L, with

L�
osc�Lc,LB� =

Lc

��Lc
2/LB

2 �
, �33�

where ��x�= � 1
4 +x�arctan 1

2�x
+

�x
2 .

Prefactor. In Eq. �32�, the pre-exponential factor coin-
cides with the result obtained for an infinite wire.3 The ratio
of Airy functions can be approximated as2,41 Ai�x�

Ai��x�
�−� 1

2 +x�−1/2 �Fig. 2�. In other terms, we may write the zero
harmonic �i.e., the result for the infinite wire� as

��̃0 � − L�
env, �34�

where

L�
env = � 1

2LN
2 +

1

LB
2 
−1/2

. �35�

This combination expresses that, in a wire of width w, the
penetration of the magnetic field provides the dominant cut-

off when typical trajectories enclose more than one quantum
flux L�wB�
0 �here L��LN for trajectories with winding
n=0�.

Exponential damping. In the exponential of Eq. �32�, the
effective length interpolates between L�

osc� 8
�Lc for LB�Lc

and L�
osc�LB for LB�Lc. Its overall behavior is well ap-

proximated by

L�
osc � �� �

8Lc

2

+
1

LB
2 �−1/2

= � �2L

64LN
3 +

1

LB
2 
−1/2

, �36�

which differs with Eq. �33� by less than 1.5% �Fig. 3�. When
LB is the shortest length, the decay of AAS oscillations
�e−nL/LB can be understood from the fact that modulations of
the flux enclosed by trajectories with finite winding become
larger than the quantum flux nLwB�
0. Equation �36� was
used in the analysis of the recent experiment.6

These two remarks show that the magnetic length LB
probes two different length scales: in the pre-exponential fac-
tor LB probes the Nyquist length LN�T−1/3, whereas in the
ratio of harmonics ��̃n /��̃0, the magnetic length LB probes
the length scale Lc�T−1/2.

D. How to analyze MC experiments in networks

In order to understand the implications of this remark, let
us discuss the structure of the typical MC curve of a network.
The following discussion applies to the case LN�L, where
Eq. �32� holds. Figure 4 represents a typical MC curve, here
for a chain of rings. It exhibits rapid AAS oscillations with a
period given by Bosc�
0 /L2, superimposed with a smooth
variation over a scale Bdamp�
0 /wL�. The phase coherence
length can be extracted either from the amplitude of the os-
cillations or from the decay of the envelope of the MC curve.
Which L� �LN or Lc� is obtained from such a curve? Accord-
ing to Eq. �32� we see that L�→LN in the pre-exponential
factor, which mostly dominates the smooth envelope, while
L�→Lc in the exponential decay, which dominates the
damping of the rapid oscillations. In order to decouple the

� � � � � �

L
c
/L

B

������

������

������

�����

FIG. 3. The relative difference 
1−��x2� /��� /8�2+x2� between
the effective length L�

osc, Eq. �33�, and its approximation, Eq. �36�,
does not exceed 1.5%.
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two effects the analysis of the experiments of Ref. 6 have
been analyzed as follows:16,67 the Fourier transform of the
MC curve ���B� presents broadened Fourier peaks due to
the penetration of the magnetic field in the wires. Integration
of Fourier peaks eliminates this effect. Ratio of harmonics
involve the length scale Lc. The length LN was extracted
from the smooth envelope ��̃env=�n��̃n���̃0 for LN�L.
The temperature dependence of the phase coherence length
was extracted in this way in Ref. 6. Results are plotted in
Fig. 5, exhibiting clearly the two length scales in the regime
LN�L. We see that it is crucial to analyze the experiment in
terms of the MC harmonics ��n.

Isolated ring vs ring embedded in a network. In transport

experiments the ring is never isolated: it is at least connected
to contacts through which current is injected. Moreover the
samples are often made of a large number of loops, in order
to realize disorder averaging. The results obtained for the
isolated ring are fortunately relevant to describe a more com-
plex network of equivalent rings �Figs. 1 and 9� when the
rings can be considered as independent, i.e., when interfer-
ence phenomena do not involve several rings; this occurs
when L��L �or LN�L�, in practice in a high-temperature
regime. This temperature dependence of harmonics is rather
difficult to extract from measurements since harmonics are
suppressed exponentially. This has been done only very re-
cently in Ref. 6. Another difficulty is that the “high-
temperature regime” LN�L is in practice quite narrow in
these samples due to fact that electron-phonon interaction
dominates the decoherence above 1 K �in the sample of
Refs. 11 and 51 LN is much larger and when LN�L the role
of electron-electron interaction is negligible�.

It is an important issue to obtain the expression of the WL
correction for a broader temperature range, that is, to study
the regime L�LN. This regime is reached in several
experiments.11,16,51 In this case diffusive interfering trajecto-
ries responsible for AAS harmonics are not constrained to
remain inside a unique ring, but explore the surrounding net-
work �see Figs. 1, 6, and 9�. This affects both the winding
properties and the nature of decoherence. The MC oscilla-
tions are therefore network dependent. In the following sec-
tions we discuss the behavior of the MC harmonics in the
limit L�L� �or L�LN� for different networks: a ring con-
nected to long arms, a necklace of rings, and a large square
network. The case of a long hollow cylinder will also be
discussed.

V. CONNECTED RING

In this section we consider the case of a single ring con-
nected to two wires supposed much longer than L� �Fig. 6�.
This problem has already been considered in Refs. 5 and 7.

A. Model A

�i� Let us consider first the case L��L. The Cooperon is
constructed in Appendix F, Sec. 1 �see Ref. 7� and we obtain

��̃n�x � ring� � − �2

3

2n

L�e−nL/L�, �37�

where x is any position inside the ring far from the vertices
�at distance larger than L��.

�ii� Now we turn to the regime L��L. The Cooperon is
uniform inside the ring and is computed in Appendix F, Sec.
1. We have7

a b
c

d

φ

FIG. 6. �Color online� A ring connected to reservoirs through
long wires a and b. In the regime L��L, the WL correction is
dominated by trajectories exploring the arms, as represented here.

�8 �6 �4 �2 0 2 4 6 8

B

�0.6

�0.5

�0.4

�0.3

�0.2

�
�
(B
)

envelope

�
n
��

n

��
0

FIG. 4. �Color online� Typical shape of the MC curve of a
network �here a chain of rings�. Rapid oscillations are AAS oscil-
lations. Damping of oscillations over large scale is due to the pen-
etration of the magnetic field in the wires.

FIG. 5. �Color online� Phase coherence length as a function of
the temperature obtained from measurements realized on a large
square network6 of lattice spacing a=1 �m �perimeter L=4 �m�.
The length scale L�→L�

env�T−1/3 has been extracted from the
smooth MC while the length L�→L�

osc�T−1/2 has been extracted
from ratio of harmonics. 
Note that L�

env and L�
osc in Ref. 6 denote

Eqs. �35� and �36� for LB=�.�
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��̃n�x� � −�L�L

2
e−n�2L/L� for L � L�, �38�

where x is any position inside the ring, or in the arms at a
distance to the ring smaller than L�. We emphasize that this
behavior, quite different from Eq. �3�, is due to the fact that
the diffusive trajectories spend most of the time in the wires7

�the distribution of the time spent by winding trajectories in
the arm was analyzed in Ref. 62�.

Winding probability in a ring connected to Na arms. We
now derive the winding probability for a ring connected to
Na infinitely long arms �Fig. 7� from the inverse Laplace
transform of the Cooperon Pc

�n��x ,x�=− 1
2��̃n�x�. At small

time, Eq. �37� gives

Pn�x,x;t� � �2

3

Nan 1

�4�t
e−�nL�2/4t for t � L2, �39�

where x is inside the ring, far from a vertex �at distance
larger than �t�.

At large time scales, t�L2, the arms strongly modify the
winding properties around the ring: the time dependence of
the typical winding number becomes subdiffusive nt� t1/4, to
be compared with the behavior for the isolated ring nt� t1/2

reflected by Eq. �12�. For a ring connected to Na infinite
wires, Eq. �12� is replaced by the probability7

Pn�x,x;t� �
�L/Na

2t3/4 ��n�NaL

t1/4 
 for t � L2, �40�

where Na is the number of arms �as far as x is inside the ring
or at a distance to the ring smaller than t1/2�1 /��=L�, the
Cooperon, or the corresponding probability is almost inde-
pendent on x�. The function ����, given by7,62

���� =
2

�
Re�e−i�/4�

0

�

du�ue−u2−�u�e−i�/4� , �41�

is studied in Appendix B and plotted in the conclusion �Fig.
17�.

From the conductivity to the conductance. In the geom-
etry of Fig. 6, the conductance is not simply related to the
conductivity. The classical conductance of the connected ring
is given by g=�dNc�e /L with L= la+ lc�d+ lb, where li is the
length of the wire i. lc�d

−1 = lc
−1+ ld

−1 is the equivalent length.
From Eq. �8�

�gn =
1

�la + lc�d + lb�2

� ��
a

+
ld
2

�lc + ld�2�
c

+
lc
2

�lc + ld�2�
d

+ �
b
�dx ��̃n�x� .

�42�

The Cooperon ��̃n�x�=−2Pc
�n��x ,x� has been constructed for

different positions of the coordinate x in Appendix F, Sec. 1.
Depending on the ratio L� /L, the WL correction �gn is
dominated by different terms.

�i� For L��L, Eq. �F6� shows that harmonics of the
Cooperon decay exponentially in the arms �Fig. 24�; inside
the ring, the Cooperon �F8� is almost uniform, apart for
small variations near the nodes. Therefore �gn is dominated
by integrals �c and �d in the ring and we have

�gn �
lc�d

L2 ��̃n�x � ring� for L� � L , �43�

where x is any position inside the ring far from the vertices
�at distance larger than L��.

�ii� For L��L, using Eqs. �F6� and �F8� we see that the
terms �c and �d bring a contribution proportional to the pe-
rimeter L whereas the terms �a and �b bring larger contribu-
tions proportional to L�: �adxPc

�n��x ,x�� 1
2L�Pc

�n��0,0�; there-
fore

�gn �
L�

L2��̃n�x � ring� for L � L�. �44�

The general expression describing the crossover between
Eqs. �43� and �44� can be obtained easily using the formal-
ism of Ref. 30.

B. Model B

We now compute the harmonics of the conductivity
within model B. We have now to consider Eqs. �13�, �15�,
and �18�. The function W�x ,x�� has been constructed in Ref.
5. In the limit la, lb�L and if x and x� belong to the con-
necting wires for x, x� �i.e., LN� �la, lb, the function coin-
cides with the one of the infinite wire W�x ,x��� 1

2 	x−x�	.
Therefore, since in the limit L�LN the diffusive trajectories
spend most of the time in the wires62 �Fig. 6�, the dephasing
mostly occurs in the wires and the relaxation of the phase
coherence is similar to the one for the wire, Eq. �24�, irre-

spective of the winding: �ei	V
Ct
n��V,Ct

n→ fwire�t /LN
2 �.

Introducing Eq. �24� in Eq. �13� and performing the
change in variable 	um	t /�N=v2, we obtain for the correction
to the conductivity

��̃n�x� � − �2�LNL�
m=1

�
1

	um	7/4

� �
0

�

dv�v��	um	1/4n� 2L

vLN

e−v2

, �45�

where x is any position inside the ring. Using Eq. �41� we

...

1
2

3

Na

FIG. 7. A ring connected to Na wires.
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rewrite the double integral in polar coordinates and perform
integration over the radial coordinate. We find

��̃n�x� � − Ln F1�n�2L/LN� �46�

with

F1��� =
2�2

�
�
m=1

�
1

	um	7/4g�	um	1/4�� �47�

and

g��� = Re� e−i�/4

4
�

0

�/2

d��sin 2�e−��cot�e−i�/4� , �48�

g��� =
1
�2

Re�e−i�/4�
0

�

dt
t2e−�te−i�/4

�t4 + 1�3/2 � . �49�

A convenient representation can be obtained by a rotation of
� /4 of the axis of integration in the complex plane. We get

g��� =
e−�

�2
�

0

�

dt� 1

8t3/2 −
�t + 1�2e−�t


�t + 1�4 − 1�3/2
 . �50�

The function F1��� is plotted in Fig. 8. We now analyze the
limiting behaviors.

We first consider the limit LN�n2L. Equation �50�
gives g���1�� 1

�2
e−��0

� dx
8x3/2 �1−e−�x�= 1

4�2
���e−�; there-

fore F1���1�� 1
2 	u1	−13/8�� /�e−	u1	1/4� and

��̃n�x� � −
Ln��

25/4	u1	13/8� LN

n2L

1/4

e−�2n�L/LN �51�

�T−1/12e−nL1/2T1/6
for L � LN � n2L , �52�

where �2=�2	u1	1/4�1.421.
For the lowest temperature n2L�LN, Eq. �49� gives

g�0�= 1
4��

��3 /4�2. Therefore F1���1��A1 /� with A1

= 1
2
�2 /���3 /4�2�m=1

� 	um	−7/4�1.191 �the sum is
�m=1

� 	um	−7/4�1.989�,

��̃n�x� � − A1�LNL

2
for n2L � LN. �53�

Comparison between models A and B. We have seen that
for the wire, the MC obtained from the two models are re-
lated through L�→�2LN �cf. Sec. IV�. It is tempting to look
for a similar relation for the connected ring in the limit
L�LN.

Let us compare the results for the two models of decoher-
ence. In the limit n2L�LN the expression �53� is very close
to Eq. �38� because in this case, the harmonics involve an
integral over time of the function �ei	�V,Ct

. Therefore har-
monics are insensitive to the details of this function but only
to the scale over which it decays. In the other limit
LN�n2L, the calculation of the harmonics rather involves the
tail of the function �ei	�V,Ct

. Equation �51� presents an expo-
nential decays similar to Eq. �38�, with a different pre-
exponential power law since the decay �ei	�V,Ct

��t /�Ne−	u1	t/�N is different from the simple exponential de-
cay e−t/�� for model A. The additional �t in model B explains
the different pre-exponential terms in Eqs. �38� and �51�.

The similarities between results of model A and B are not
surprising because decoherence occurring mostly in the wire
is independent on the winding number. Could we map the
results of the two models through a simple substitution of
phase coherence length, as for the infinite wire? In the re-
gime L�LN�n2L we should compare the exponentials of
Eqs. �38� and �51� what leads to L�→LN /�	u1	�0.99LN;
however pre-exponential factors cannot be matched, obvi-
ously. In the regime LN�n2L we rather compare the square
roots �38� and �53� and therefore L�→A1

2LN�1.418LN. De-
spite the fact that there is no unique simple substitution, we
get in both cases L��LN.

Conductivity vs conductance. We discuss the relation to
the conductance. In the regime LN�L discussed in this sec-
tion, we expect

�gn �
LN

L2��̃n�x� �54�

for x� ring, for the same reason as for model A, Eq. �44�

the factor LN comes from the fact that the integral �8� is
dominated by regions of typical size LN in the arms�.

VI. CHAIN OF RINGS

Let us consider now a chain of rings separated by arms of
lengths la 
Fig. 9�a��. The case where the phase coherence
length remains smaller than the arms �L�� la� can be ob-
tained from the results of the previous section since the rings
can be considered as independent. The conductance of a
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FIG. 8. �Color online� ��̃n�F1��� �continuous blue line� as a
function of 1 /�2�LN /n2L. Comparison with the limiting behavior
F1���1��1.191 /�−0.877 �red dotted line�. Inset: �F1��� in semi-
log scale. For moderate values of �, the function is well fitted by
1.21e−0.9� �magenta dots�. Green dashed curve is the asymptotic
expression, Eq. �51�.
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chain of such Nr rings is given by performing the substitution
1
L2 →

Nr


�Nr+1�la+Nrlc�d�2 in the expression of �gn for one ring,
Eqs. �43�, �44�, and �54�.

When arms separating the rings are smaller than the phase
coherence length �la�L��, coherent trajectories enclose
magnetic fluxes in several rings. In order to study how the
MC harmonics are affected by this effect we consider the
limit when rings are directly attached to each other 
Fig.
9�b��.

A. Model A

Considering the conductance of the symmetric chain of
Fig. 9�b�, the weights of the wires involved in Eq. �8� are all
equal. This justifies a uniform integration of the Cooperon in
the chain. In this case we can use the relation between the
WL correction and the spectral determinant27–29 �Appendix
D�. The spectral determinant of the infinite chain is given in
Appendix F, Sec. 2. Averaging the Cooperon in the chain,
��̃�����chain

dx
Vol��̃�x ,��, and using Eqs. �D5� and �F10�,

we finally obtain26

��̃��� = −
L�

2 �coth�L/2L�� −
2L�

L

+
sinh�L/2L��

�cosh2�L/2L�� − cos2��/2�

 , �55�

where �=4�
 /
0 is the reduced flux per ring. We now study
the harmonics n�0,

��̃n = −
L�

�2
�

0

2� d�

2�

sinh�L/2L��ein�

�cosh�L/L�� − cos���

= − L� sinh�L/2L���
circle

dz

2i�

zn−1

��eL/L� − z��z − e−L/L��/z
.

�56�

The integration in the complex plane is performed along the
unit circle in the clockwise direction. The segment of the real
axis 
0,e−L/L�� is a branch cut. The contour of integration is
deformed to follow closely this segment. We obtain

��̃n = −
L

2�

sinh�L/2L��
L/2L�

e−�n−1/2�L/L��
0

1

du
�1 − u�n−1/2

�u2 + �u
,

�57�

with �=e2L/L� −1. We recognize the integral representation
�C1� of the hypergeometric function69 F,

��̃n = −
L

2�

sinh�L/2L��
L/2L�

e−�n+1/2�L/L�B�1

2
,n +

1

2



�F�1

2
,n +

1

2
;n + 1;e−2L/L�
 , �58�

where B�x ,y� is the Euler � function.
Weakly coherent limit. We consider the limit L��L. Us-

ing F�� ,� ;� ;�→0�→1, we obtain

��̃n � −
�2n − 1�!!

2n+1n!
L�e−nL/L� for L� � L , �59�

a result reminiscent of the result of the isolated ring �3�, with
a different prefactor originating from the probability to cross
the vertices of coordination number 4 �note that �2n−1�!!

2n+1n!
= ��n+1/2�

2��n!
� 1

�4�n
for n�1�.

Large coherence length. In the opposite limit L��L.
Equation �C4� gives

��̃n � −�L�L

8�n
e−nL/L� for L � L� � nL . �60�

We have recovered an exponential damping of the harmon-
ics, reminiscent of Eqs. �3� and �59�, but with a different L�

dependence of the pre-exponential factor.
On the other hand, for harmonics with nL�L�, the har-

monics can be expanded by using Eq. �C3�. Let us introduce
bn=ln n− �n+ 1

2 �+ �1�. These coefficients converge to a fi-
nite limit at large n: bn=−C− 1

24n2 +O� 1
n4 �, where C=− �1�

=0.577215. . . is the Euler constant. Finally we obtain

��̃n � −
L

2�

ln�2L�/nL� + bn� for nL � L�. �61�

It is useful to remark that expressions �60� and �61� coin-
cide with the limiting behaviors of the modified Bessel func-
tion K0�z� for large n �the proof is given in Appendix C�,

��̃n � −
L

2�
K0�nL/L�� for L � L�. �62�

Up to a factor 1 /2 interpreted below, this expression coin-
cides with the MC harmonics for a long hollow cylinder,14

Eq. �102� recalled in Sec. VIII. We compare this approxima-
tion with the exact expression �58� in Fig. 10. We see that the
approximation is already good for n=1, provided L��L.
The difference rapidly diminishes as n increases.

Logarithmic divergence of the harmonics for L�→�. We
see from Eq. �61� that the harmonics are weakly dependent
on n �for n�L� /L�. This logarithmic behavior reflects the
singular behavior ��̃osc����1 /�, with a cutoff at ��L /L�:
��̃n��L/L�

1/n d�
� =ln
L� / �nL��. The harmonics are therefore al-

most independent on n as soon as n is small enough com-

...
l

...

/2

a

L

Lϕ

......
(b)

(a)

FIG. 9. �Color online� Chains of rings. If we consider the regime
la�L��or LN��L the rings of figure �a� can be considered as inde-
pendent. On the other hand, in the regime L��or LN�� la ,L interfer-
ences occur between trajectories encircling several rings; the latter
cannot be considered anymore as independent in this case, as illus-
trated by the trajectory in the network �b�.
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pared to L� /L. Note that in practice, this logarithmic diver-
gence of the harmonics is limited: for a chain of Nr rings
contacted at two reservoirs, when the phase coherence length
exceeds the total length of the chain L��NrL, the cutoff is
provided by NrL. Therefore, for L�→�, harmonics reach a
finite limit ��̃n�− L

2� ln�Nr /n�.
Winding probability. We now extract the probability

Pn�x ,x ; t� from these results. First of all the behavior �59� is
related to

Pn�x,x;t� �
�2n − 1�!!

2n+1n!

1
�4�t

e−�nL�2/4t for t � L2. �63�

We have recovered Eq. �12� with an additional dimensionless
factor coming from the probability to cross the vertices of
coordination number 4 �this factor can be understood when
one writes the trace formula for the heat kernel in the
network29,70�.

The regime L��L for the WL correction probes the re-
gime t�L2 for the winding probability. We use the approxi-
mation �62� in order to perform the inverse Laplace trans-
form. Using the integral representation of the modified
Bessel function,69 we get

Pn�x,x;t� �
L

8�t
e−�nL�2/4t for t � L2. �64�

We may check that Eqs. �60� and �61� coincide with the
limiting behaviors of this probability. It is interesting to point
that this probability is similar to the one found for an infi-
nitely long hollow cylinder, apart for a factor 1 /2. This ad-
ditional factor can be understood from the fact that, starting
from a given ring, it is equiprobable to return in one of its
two arms.

Let us give a heuristic argument to recover roughly �64�,
which will be useful for the following. Arriving at a vertex,
the diffusive particle equiprobably chooses one of the four
arms. Therefore it is equiprobable to wind a ring or not,
while diffusing along the chain. This suggests that the wind-

ing probability is almost independent on n, up to n��t /L,
the maximum number of rings explored for a time t. This
rough approximation would be Pn�x ,x ; t��Nt���t /L− 	n	�.
The normalization is estimated easily: since diffusion along
the chain is one dimensional, we expect �nPn�x ,x ; t�
�1 /�t so that Pn�x ,x ; t��L / t for 	n	��t /L and 0 other-
wise. This is a crude estimate of Eq. �64�.

B. Model B

In order to compute the MC harmonics we first need to
construct the function W entering in Eq. �15�. Following Ap-
pendix F, we introduce a coordinate x̃= �x , f� to locate a point
in the chain �the continuous variable x measures the distance
along the chain while the discrete index f � �u ,d� indicates
the arm, up or down�. If x̃ and x̃� do not belong to the same
ring we have

W�x̃, x̃�� =
1

4
	x − x�	 =

1

2
Wwire�x,x�� . �65�

Remembering that W�x ,x�� is proportional to the resistance
between points x and x� this equation has a clear meaning:
when two consecutive nodes are linked by two wires instead
of one, the resistance is diminished by a factor of 2. In the
limit t�LN

2 the trajectories contributing to

�ei	V
Ct
n��V,Ct

n =�exp�−
2

LN
3 �

0

t

d� W„x���,x�t − ��…��
Ct

n

�66�

are trajectories extending over distances LN�L along the
chain. In this case we can neglect the contributions to the
integral where the two arguments of W�x̃ , x̃�� are in the same
ring. We have seen that for nL��t the measure of the
Brownian paths weakly depends on n; therefore we expect
that �ei	�V,Ct

n ��ei	�V,Ct
, where the average of the left-hand

side is realized among Brownian curves of definite winding,

0 1 2 3 4 5 6 7 8

1/� (i.e. L
N
/nL)

0

0.1

0.2

0.3

0.4

�
�
�
n
/L
=
F
2
(�
)

Model B

FIG. 11. �Color online� ��̃n�F2��� as a function of 1 /�
�LN /nL �blue continuous line�. Comparison with the limiting be-
havior �red dotted line� 1

2� 
ln�1 /��+Ccyl� with Ccyl�0.51.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

L��nL

�
�
Σ

n
�L
�
�

Model A

FIG. 10. �Color online� Comparison between exact result �58�
for n=1 �dashed blue line� and 2 �dotted red line� and the approxi-
mation �62� �black continuous line�. The interrupted green curve is
�59�. Even for small n�=2� Eq. �62� is a very good approximation
of Eq. �58�.
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whereas the average of the right-hand side is among all
Brownian curves. The argument shows that the function de-
scribing decoherence corresponds to the result of the infinite
wire in which LN

3 →2LN
3 . This factor 2 stands from the ratio

between the resistance of a wire and of a chain of rings of the
same length. Finally

�ei	V
Ct
n��V,Ct

n � fwire�t/22/3�N� . �67�

We can use Eq. �24� in order to compute ��̃n

�−2�L2
� dt Le−�nL�2/4t

8�t fwire�t /22/3LN
2 �. The lower cutoff takes into

account the fact that expression of Pn�x ,x ; t� is only valid for
t�L2. However, except if n=0, the cutoff is not important
and can be replaced by 0. Using Eq. �24� we obtain �Fig. 11�

��̃n � − L F2�2−1/3nL/LN� , �68�

where

F2��� =
1

4 �
m=1

�
1

	um	3/2e−�	um	�. �69�

In the limit LN�nL the first term of the series dominates,

��̃n � −
L

4	u1	3/2e−�3nL/LN �70�

�e−nLT1/3
for L � LN � nL , �71�

where �3=2−1/3	u1	1/2�0.801.
In the opposite limit, for nL�LN��→0�, we can replace

the sum by an integral and use the asymptotic behavior um

�−
 3�
2 �m− 3

4 ��2/3,

F2��� �
�→0

1

6�
�

1

� dm

m
e−�
3�m/4�1/3

, �72�

Fz��� �
1

6�
�

1

1/�3 dm

m
+ cste =

1

2�

ln�1/�� + Ccyl� . �73�

Finally we find a result similar to the one obtained for expo-
nential relaxation of phase coherence,

��̃n � −
L

2�

ln�LN/nL� + Cchain� for nL � LN. �74�

The constant is estimated numerically: we find Ccyl�0.51,
hence Cchain�0.74. This result could also have been more
simply obtained by noticing that fwire�t /22/3LN

2 � cuts the tail

of Pn�x ,x ; t� on a scale LN
2 : ���̃n��−2��nL�2

LN
2

dt L
8�t .

Comparison between models A and B. As we have done
for the infinite wire and the connected ring, we establish
some correspondence between the results for the two models
when LN�L. In the regime L�LN�n2L the exponentials of
Eqs. �60� and �70� may be matched if L�→LN /�3�1.25LN.
In the regime LN�n2L the logarithmic behaviors �61� and
�74� coincide for L�→1.87LN.

For not too large n, the two curves ��̃n
�B��LN�

���̃n
�A��L��1.87LN� are very close, apart for LN�L for

which there is a qualitative difference between Eqs. �3� and
�27�.

From the conductivity to the conductance. The weights in
Eq. �8� are all equal and conductance is related to an uniform
integration of ��̃�x� in the chain. The dimensionless conduc-
tance is given by �g= 4

NrL
��̃, where Nr is the number of

rings of the chain.

VII. SQUARE NETWORK

The easiest way to realize disorder averaging experimen-
tally is to use networks with a large number of rings, like 2D
networks �square,6,11,15,16,67,68 honeycomb,15,19,20 dice11,51�.
The “high-temperature” regime �LN�L� is now well under-
stood theoretically and experimentally,6 but low-temperature
experimental results are still unexplained.51 Therefore under-
standing the magnetoconductance of large networks when
decoherence is dominated by e-e interaction still deserves
some clarification. In this section we study the case of an
infinite square network of lattice spacing a �Fig. 1�.

A. Model A

The weak localization correction was derived analytically
by Douçot and Rammal for rational fluxes �p,q=2�p /q with
p ,q�N �reduced flux is defined as �

2� =2
 /
0�. They
obtained26

��̃��p,q� = −
L�

2 �coth
a

L�

−
L�

a
+

8 sinh
a

L�

�q

Pp,q� �4 cosh
a

L�



Pp,q�4 cosh
a

L�



�K� 4

Pp,q�4 cosh
a

L�

�� , �75�

where Pp,q��� is a polynomial of degree q defined in Appen-
dix G, Sec. 3 where derivation of Eq. �75� is recalled. K�x� is
the elliptic integral of the first kind.69

Weakly coherent network. The harmonics are suppressed
exponentially as ��̃n�−L�e−4na/L�. Despite the fact that
there is no close expression of the remaining dimensionless
n-dependent factor, a systematic expansion of the spectral
determinant can be written thanks to the trace formula of
Ref. 70 �the first terms of this expansion are available in
Ref. 16�.

Large coherence length. The rest of the section is devoted
to the large coherence length regime L��a.

Continuum limit. In the limit of small flux, ��1, and
large coherence length, L��a, the discrete character of the
network disappears and one should recover the results for the
2D plane in a uniform magnetic field. Informations can be
extracted from the study of this limit.

The zero-field WL correction is obtained from Eq. �75�
with p=q=1, using P1,1�x�=−x. Using the expansion of the
elliptic integral,69,71 we find16,72
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��̃�0� � −
a

�
�ln�4L�/a� +

�

6
� . �76�

This result is reminiscent of the WL correction of the film
�91�, but here, the cutoff at small scales is naturally provided
by the lattice spacing a.

The limit of small fluxes is studied in detail in Appendix
G, Sec. 2. Using that �=4�
 /
0=4�Ba2 /
0, Eq. �G4�
reads

��̃�� � 1� − ��̃�0� �
a

2�
� �1

2
+

a2

�L�
2 
 − ln� a2

�L�
2 
� .

�77�

This expression gives a quadratic behavior for small flux86

��̃��� − ��̃�0� �
a

48�
��L�

2

a2 
2

for � �
a2

L�
2 �78�

and a logarithmic behavior for intermediate fluxes86

��̃��� �
a

2�

ln � + Csn� for

a2

L�
2 � � � 1, �79�

where Csn=−C−3 ln 2− �
3 �−3.704.

We now turn to the analysis of the MC harmonics. A first
simple remark allows to get the scaling of harmonics with
time: the reduced flux � is the variable conjugated to the
harmonic number n; therefore the structure ��̃���
=fct�a /��L�� corresponds to ��̃n=fct��na /L��. We now ex-
tract this function. Using the path integral formulation it is
straightforward to get the structure

��̃��� − ��̃�0� = − 2�
0

�

dtP�x,x;t���ei�N
Ct��Ct
− 1�e−t/L�

2
,

�80�

where N
Ct� is the winding number of the closed trajectory.
At large times the return probability coincides with the one
of a plane, P�x ,x ; t�� a

4�t �Appendix F, Sec. 3�; it can be
obtained from Eq. �76� thanks to an inverse Laplace trans-
form. Using69 �0

�dt� 1
t − !

sinh !t �e
−�t= � 1

2 + �
2! �−ln� �

2! �, we de-
duce that expression �77� corresponds to �ei�N
Ct��Ct

� �t
2a2 sinh��t/2a2� . A Fourier transform69 gives the distribution of

the winding number, plotted in Fig. 17,

Qt�N� �
�a2

2t cosh2��a2N/t�
. �81�

We have recovered the well-known Levy law for the distri-
bution of the algebraic area A=Na2 enclosed by a planar
Brownian motion.73–76 For t�a2 and n�1, the return prob-
ability conditioned to wind n fluxes is therefore expected to
behave as Pn�x ,x ; t��P�x ,x ; t�Qt�n�,

Pn�x,x;t� �
a3

8t2

1

cosh2��na2/t�
. �82�

A Laplace transform gives the corresponding harmonics,

��̃n � −
a

4�n
F3��na2/L�

2� , �83�

where

F3��� = �
0

�

dy
e−�/y

cosh2 y
. �84�

We extract the following limiting behaviors:

F3��� �
��1

1 − � ln��0/�� , �85�

F3��� �
��1

�4��2��1/4e−�8�. �86�

The constant �0 is estimated numerically: �0�1.239. The tail
of the distribution corresponds to

��̃n � −
a

�2n�3/4� a

�L�

e−�8�na/L� �87�

for L���na. The saturation of the harmonics for L�→� is
given by

��̃n � −
a

4�n
�1 −

�na2

L�
2 ln� L�

2�0

�na2
� �88�

for �na�L�.
Harmonics reach a finite limit for L�→�. It is interesting

to compare the MC of the chain and the MC of the
square network. For the chain, the behavior of the MC
near zero flux ��̃�chain�����1 /�+cste, Eq. �55�, is related to
a weak logarithmic divergence of the harmonics ��̃n

�chain�

� ln�L� /nL�, Eq. �61�. For planar networks the WL correc-
tion presents a weaker divergence at zero magnetic field
��̃���� ln �. Therefore �0

2�d���̃���"� and the harmonics
reach a finite value in the limit L�→�. Let us compute this
value. The singular behavior ��̃����Cste+ a

2� ln	�	 near
zero flux is expected to dominate the harmonics behavior
��̃n��0d� ln � cos�n��. The typical scale over which ln �
varies is � ln 1 /�. If we define �c by �c ln 1 /�c=1 /n, we see
that the integral is dominated by the interval 
0,�c�. We have
�c�1 / �n ln n�, whence ��̃n��0

1/�n ln n�d� ln ��−1 /n. More
precisely, we have obtained above: ��̃n�− a

4�n for n�1.
Numerical calculations. The MC is computed numerically

as a function of the reduced flux � for rational fluxes �
=2�p /q. As recalled in Appendix G, Sec. 3 the computation
of the MC is related to the study of the spectrum of a tight
binding Hamiltonian on a square lattice submitted to a mag-
netic field, the so-called Hofstadter problem. For rational
flux �=2�p /q, this spectrum presents q bands determined by
the polynomials Pp,q���. For example, band edges corre-
spond to roots of Pp,q���= #4. For small q �in practice we
choose $8� the MC is computed by using Eq. �75�. For large
q �large number of Hofstadter bands�, we use a more effi-
cient procedure and rather follow Ref. 77: we neglect the
dispersion of Hofstadter bands, according to which Eq.
�G10� reduces to 1

NxNy
Tr� 1

N��,�p,q� �� 1
q�r=1

q 1
4 cosh���a�+�̄r

, where
�̄r designates the position of the band. The weak localization
correction is represented in Fig. 12 as a function of the re-
duced flux � for three values of the ratio L� /a. As this latter
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increases, the MC becomes sharper around zero flux, accord-
ing to the above discussion, and the harmonic content be-
comes richer. The MC is computed in this way for different
values of the phase coherence length ranging from L� /a
=0.5 to 50. For each curve the first ten harmonics are ex-
tracted and plotted as a function of L� /a in Fig. 13.

In order to analyze the numerical results, we use the dis-
cussion of the above paragraph on the continuum limit. In
the limit L��a we expect the scaling nt� t /a2. In Fig. 14,
we plot 4�n

a ��̃n as a function of 1 /��=L� /a��n �note that
the scaling nt� t /a2 is only expected for L��a when we
reach a “two-dimensional limit;” for L��a we rather expect
the scaling corresponding to the isolated ring nt��t /a�.

After rescaling, all curves of Fig. 13 collapse onto each
other as we can see in Fig. 14 �at least in the domain L�

�a�. Some significant deviation from expression �83� occurs
only for n=1. In order to analyze the behavior for largest L�

more precisely, harmonics are replotted as functions of the
variable � ln��0 /�� in the inset of Fig. 14: we check the linear

behavior with this variable. Surprisingly, the continuum limit
can be considered as a very good approximation already for
n
2.

Remark: Brownian path/random walk. We have shown
that the distribution of the number n�Z of cells enclosed by
a Brownian path in the square lattice is very close from the
Levy law describing the distribution of the algebraic area
enclosed by a planar Brownian motion �continuum limit� al-
ready for n
2. It is interesting to point out that this remark
also holds for the number of cells enclosed by a discrete
random walk jumping between the different nodes of the
square lattice.78,79

B. Model B

1. Two-dimensional limit

The thin film. Let us first recall some known results for the
plane �or thin film of thickness b�.3,33,35 In two dimensions
the diffuson presents a logarithmic behavior. The function W
behaves in the same way, with a cutoff at small scales at the
thermal length LT:3,33,52,80 W�r� ,r���= 1

2� ln��r�−r��� /LT� for
�r�−r����LT. Therefore the functional governing decoherence
behaves as

�
Ct�t �
1

2
�	V
Ct�2�V �

2e2T

�0b
t

1

2�
ln

�Dt

LT
. �89�

We recognize the sheet resistance82 R�=1 / �b�0� of the film
of thickness b. The phase coherence �Nyquist� time is evalu-
ated from �
Ct�t�1. We obtain the temperature depend-
ence3,33,35
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FIG. 12. �Color online� WL correction for L� /a=2 �blue dia-
monds�, L� /a=5 �brown squares�, and L� /a=50 �black circles�.
The red continuous lines correspond to the continuum limit, Eqs.
�76� and �77�.
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FIG. 13. �Color online� Numerical calculation of ten first MC
harmonics ��̃n for a square network, computed for L� /a between
0.5 and 50.
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FIG. 14. �Color online� The harmonics represented in Fig. 13
are plotted here as a function of the variable ��=L� /a��n. The
magenta dashed line corresponds to the continuum limit: function
F3���. Inset: Same functions as a function of � ln��0 /�� with �0

�1.239.
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1

�N
film =

R�

h/e2T ln� h/e2

2R�
� , �90�

valid for LT�b. This behavior was observed experimentally
for thin metallic film83 and two-dimensional electron gas.84

We recall that 2D magnetoconductance is given by:2,13,85

��film�B� =
2e2

h

1

2�b
� �1

2
+

�B

�N
film
 − ln� �B

�e

� + cste,

�91�

where �B=
0 / �8�DB� and  �z� is the Digamma function86


the additional factor 1 /2 in the Digamma function, com-
pared to Eq. �77�, is explained in Appendix G, Sec. 2�. We
may simply write ���− 2e2

h
1

2�b ln
min��N
film,�B� /�e�+cste.

The small time cutoff �e in Eq. �91� is introduced by hand to
account for the fact that the diffusion approximation only
holds for times87 t��e.

The square network. For large time scale ���� t�a2� and
small magnetic fields �such that 
�
0� the result for the
network should coincide with the one for a plane. In this case
the function W entering the decoherence rate is W�x ,x��
� a

2� ln��x−x�� /a�, where �x−x�� is the distance between the
two points of the network. The logarithmic behavior is now
cut off naturally at the scale a. Because the function W pre-
sents a smooth logarithmic behavior, we extract the relevant
time scale �phase coherence time� by following the same
lines as for the plane. We write

�
Ct�t �
1

2
�	V
Ct�2�V �

2D

LN
3 t

a

2�
ln

�Dt

a
=

2e2T

�0s
t

a

2�
ln

�Dt

a
,

�92�

where s=wb is the section of the wires of width w and thick-
ness b �Fig. 1�. From this expression we extract a time scale
reminiscent of Eq. �90� for the film,

1

�N
net =

R�
net

h/e2T ln�LT
2

a2

h/e2

2R�
net� . �93�

This result is valid for LT�a. The opposite limit LT�a is
similar to the case of a thin film. The cutoff in the function W
is given by the thermal length52 LT, and therefore 1 /�N

net

=
R�

net

h/e2 T ln
 h/e2

2R�
net�. However this latter regime seems less rel-

evant from the experimental point of view.36 The sheet resis-
tance of the network is

R�
net =

a

wb�0
=

a

s�0
= R�

a

w
. �94�

This characteristic time is reduced by a factor w /a, com-
pared to the Nyquist time �90� obtained for a film of same
thickness: �N

net� w
a �N

film. We can also introduce a Nyquist
length for the network LN

net=�D�N
net, related to the Nyquist

length of the wire LN by,90

1

LN
net =

1

LT
�R�

net

h/e2 ln�LT
2

a2

h/e2

2R�
net� =� 3a

2�LN
3 ln�LN/a� .

�95�

We expect that the MC presents the logarithmic behavior
��̃� a

2� 
ln �+Csn�, which is cut off at very low magnetic
field: ��̃�− a

� ln
min�LN
net ,LB� /a�, where LB=�
0 / �4�B� is

the 2D cutoff.

2. MC harmonics

In the network, the diffuson behaves logarithmically at
large distances Pd�x ,x���− a

2� ln� �x−x� � /a�. Therefore we
expect that the relaxation of phase coherence is controlled by

1

2
�	V
Ct�2�V,Ct

�
a

�LN
3 t ln��t/a� →

3a

2�LN
3 t ln�LN/a� .

�96�

As for the plane we use the fact that the functional describing
decoherence weakly depends on trajectories since W�x ,x��
� ln�x−x��. This suggests that the result for model B is
given by performing, in the result for model A, the substitu-
tion

1

L�
2 →

3a

2�LN
3 ln�LN/a�, i.e., L� → LN

net, �97�

where the Nyquist length for the network is given by Eq.
�95�. Using Eq. �87�, we get for the tail

��̃n � �LN
net�−1/2e−�8�n a/LN

net

� LN
−3/4 ln1/4�LN

a

e−�n�a/LN�3/2 ln1/2�LN/a�, �98�

��̃n � �T ln 1/T�1/4e−n1/2a3/2�T ln 1/T�1/2
. �99�

A similar substitution in Eq. �88� leads to

��̃n � −
a

4�n
�1 −

9na3

2LN
3 ln2�LN/a�� �100�

to describe the saturation of the harmonics at large LN /a
�small temperature�.

We insist that since �0d������"� the harmonics reach a
limit for L�→� �or LN→��, which is independent on the
decoherence mechanism. In other terms the magnetoconduc-
tance curve ��̃��� reaches a limit apart in a very narrow
region of width ����a /L��2 around zero flux �Fig. 12�.

VIII. HOLLOW CYLINDER

We have noticed that a network made of a large number
of rings realizes disorder averaging. Another natural way to
realize this averaging is to consider a long hollow cylinder of
perimeter L �longer than L�� submitted to a magnetic field
along its axis.14,15,17,18 We study below how the original re-
sult of AAS �Ref. 14� obtained within model A is modified
when decoherence is dominated by electron-electron interac-
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tion. In this section, it is natural to define the reduced dimen-
sionless conductivity �̃ as �= 2e2

hb �̃, where b is the thickness
of the metallic film.

A. Model A

Let us first recall the well-known result for the weak lo-
calization correction computed within model A.12,14 We de-
note by y�R the coordinate along the axis of the cylinder
and x� 
0,L� the coordinate in the perpendicular direction.
The WL correction is written as a path integral over Brown-
ian paths r����= 
x��� ,y���� in the cylinder, where x��� de-
scribes a Brownian path on the circle and y��� on R �Fig.
15�,

��̃n
AAS = − 2�

0

�

dt e−t/��

��
r��0�=r�

r��t�=r�

Dr�����n,N
x���� exp�− �
0

t

d�
1

4
r�̇2
 ,

�101�

��̃n
AAS = − 2�

0

�

dt e−t/��
e−�nL�2/4t

4�t
= −

1

�
K0�nL

L�

 ,

�102�

where K0�x� is a modified Bessel function. Therefore

��̃n
AAS � −� L�

2�nL
e−nL/L� for L� � 	nL	 , �103�

��̃n
AAS � −

1

�
ln�L�/nL� for 	nL	 � L�. �104�

These results are very similar to the one obtained for the
chain of rings 
Eqs. �60�–�62��. This is due to the similar
winding properties, what was already noticed after Eq. �64�.

B. Model B: e-e interaction

We now have to consider the path integral

��̃n = − 2�
0

�

dt�
r��0�=0

r��t�=0

Dr�����n,N
x����

�exp�− �
0

t

d��1

4
r�̇2 + 2e2TR�W„r����,0…�� ,

�105�

where we have used translation invariance along the two
perpendicular directions in order to deal with a path integral
with action local in time, in a similar way as for the ring: Eq.
�A1�.

1. Function W

The cylinder is translation invariant in the two directions,
therefore we may write W�r� ,r���=W�r�−r�� ,0� with W�r� ,0�
= Pd�r�c ,0�− Pd�r� ,0�, where r�c is a short distance cutoff of
order LT �we will see that the direction of the vector r�c plays
no role�.52

In order to avoid the divergent contribution of the zero
mode of the Laplace operator, we start by considering the
solution of ��−��P=�,

P�r�,0� =
1

L
�
n�Z

�
−�

+� dk

2�

e2i�nx/L+iky

� + �2�n

L

2

+ k2

, �106�

P�r�,0� =
1

2L
�
n�Z

1

�� + �2�n

L

2

e2i�nx/L−��+�2�n/L�2	y	.

�107�

Next we take the limit �→0 in

W�r�,0� = lim
�→0


P�r�c,0� − P�r�,0�� , �108�

W�r�,0� =
	y	
2L

+
1

2�
�
n=1

�
1

n
�cos

2�nxc

L
e−2�nyc/L

− cos
2�nx

L
e−2�n	y	/L
 . �109�

We finally obtain

W�r�,0� =
	y	
2L

+
1

2�
Re�ln�1 − e−2��ix+	y	�/L

2�LT/L 
� , �110�

where we used that �r�c � =LT�L. We can check that this
expression reproduces known results in two limits: for 	y	
�L, we recover the 1D form W�	y	 / �2L�. For 	y	�L we
obtain the 2D result W� 1

2� ln� � r� � /LT�.

2. Harmonics

The first term of Eq. �110� originates from the 1D motion
along the cylinder. To this 1D motion, we can associate a 1D

I

I

b

B
y

x

L
FIG. 15. �Color online� A metallic film is deposited on an insu-

lating wire. This allows to study quantum transport in a long hollow
cylinder.17 Two diffusive trajectories are represented with winding
n=0 and n=1.
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Nyquist time similar to the one obtained for the wire, Eq. �5�,

1

�N,1D
= � e2R��DT

L

2/3

= � e2�DT

�0bL

2/3

�111�

that coincides with Eq. �5� in which the section is taken as
s=bL.

We consider first the high-temperature limit L�LN,1D

=�D�N,1D= �
�0DbL

e2T
�1/3. We remark that for the harmonic n

=0, trajectories very unlikely wind around the cylinder and
we can use W� 1

2� ln� � r� � /LT� for y�L. Therefore the cal-
culation of the path integral �105� corresponds to the one for
the film, ��0���film, with the time scale �90�.

Next we consider nonzero harmonics n�0. In this case
the trajectories have a small extension along the wire
	y	�LN,1D�L and we can neglect the 	y	 in the exponential
in Eq. �110� �see Fig. 16�. Therefore we perform the substi-
tution

W�r�,0� →
	y	
2L

+ W̃�x� �112�

with

W̃�x� =
1

2�
ln

	sin��x/L�	
�LT/L

. �113�

This approximation allows us to factorize the path integral as

��̃n � − 2�
0

�

dt�
x�0�=0

x�t�=0

Dx����n,N
x����

�exp�− �
0

t

d��1

4
ẋ2 + 2e2TR�W̃�x���

��
y�0�=0

y�t�=0

Dy���exp�− �
0

t

d��1

4
ẏ2 +

	y	
LN,1D

3 �
 .

�114�

The first path integral runs over trajectories encircling the

cylinder. Therefore we can replace W̃�x� by its average

�0
L dx

L W̃�x�. This approximation is justified by the fact that W̃
has only a logarithmic dependence. This simplify the calcu-

lation by substituting the functional by a constant,

2e2TR��
0

t

d�W̃„x���… →
t

�N,2D
cyl , �115�

where we have introduced the time scale

1

�N,2D
cyl =

R�

h/e2T ln�L2

LT
2
 . �116�

This time is reminiscent of the Nyquist time for the film, Eq.
�90�, but the two times differ by the argument of the loga-
rithm.

The second path integral precisely coincides with the one
for a wire: 1

�4�t
�ei	�V,Ct

given by Eq. �24�. Finally

��̃n � − 2�
0

�

dt
1

�4�t
e−�nL�2/4te−t/�N,2D

cyl

�
1

�4�t
� �t

�N,1D
�
m=1

�
1

	um	
e−	um	t/�N,1D, �117�

which leads to the series �for n�0�

��̃n � −
1

2��N,1D
�
m=1

� ��m

	um	
e−nL/��m, �118�

where the times �m are defined as

1

�m
=

	um	
�N,1D

+
1

�N,2D
cyl �119�

�we recall that um’s are zeros of Airy function Ai��.
This expression assumes that L�LN,1D. We show that Eq.

�118� is also valid for the other regime L�LN,1D: in this case
the path integral runs over trajectories such that 	y	�L �see
Fig. 16�; therefore, in Eq. �110�, the exponential damping
suppresses the x and y dependence in the logarithmic of W
what leads to the same conclusion for the two regimes since
W→ 	y	

2L + 1
2� ln�L /2�LT�.

In order to analyze the two limiting cases into more de-
tails it is convenient to relate the two times as

�N,1D

�N,2D
cyl =

1

�
� L

LN,1D

ln� L

LT

 . �120�

Since the two lengths LN,2D
cyl and LN,1D are related, we just

have to consider two different regimes. As it is clear from
Eq. �119�, the harmonics are always controlled by the small-
est scale among LN,2D

cyl and LN,1D.
�i� High-temperature LN,1D�L �then LN,2D

cyl �LN,1D�. The
WL correction is dominated by nonwinding trajectories, in
this case

��̃ � ��̃0 � −
1

2�
ln� �N

film

�e

 + cste �121�

involves the 2D Nyquist time �90�. Considering the oscillat-
ing part of the MC, only the first term of the series domi-
nates. The harmonics are governed by the smallest length
among LN,2D

cyl and LN,1D,

1d

cyl

N
,

<
<

L
N

,2d
cyl

L

LN,2d

L
<

<

cyl
L

N
,1d

>
>

L
L

N
,2d

>
>

(b)(a)

FIG. 16. �Color online� Trajectories contributing to first har-
monic for “high temperature” �left� and “low temperature” �right�.
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��̃n � −
LN,2D

cyl

2	u1	LN,1D
e−nL/LN,2D

cyl
� e−nL�T ln T�1/2

�122�

for LN,1D�L. Note that this result is reminiscent of the result
�27� for a ring ��̃n

ring�e−nL3/2T1/2
: up to some logarithmic

correction it presents a similar T1/2 in the exponential for the
similar reason �related to potential fluctuations seen by wind-
ing trajectories�. However the L dependence differs from the
one of the ring.

�ii� Low-temperature L�LN,1D �then LN,1D�LN,2D
cyl �. The

harmonics involve LN,1D, the smallest length among LN,2D
cyl

and LN,1D. Equation �118� coincides with the one obtained
for the chain of rings �68�

��̃n � − 2 F2�nL/LN,1D� . �123�

For intermediate coherence length, L�LN,1D�nL, Eq. �118�
gives

��̃n � −
1

	u1	3/2e−	u1	1/2nL/LN,1D � e−nLT1/3
. �124�

For largest phase coherence length nL�LN,1D, we may
use the form derived in Sec. VI,

��̃n � −
1

�
�ln�LN,1D

nL

 + Ccyl� , �125�

where the constant, Ccyl�0.51, was introduced in Sec. VI.
Discussion. It is worth emphasizing the similarity be-

tween the results for the cylinder and for the networks.
In Sec. IV we have seen that the MC harmonics of a

weakly coherent ring probe two length scales LN�T−1/3 or
Lc�T−1/2. For the lowest temperatures the surrounding net-
work matters and another length scale emerges: the MC of
the square network involves a unique time scale 1 /�N

net

�T ln 1 /T, Eq. �95�, reminiscent of the 2D Nyquist time
�90�.

For a cylinder the MC also probes several time scales.
At high temperature the zero harmonic related to non-
winding trajectories probes the 2D Nyquist time 1

�N
film

=
R�

h/e2 T ln
h /e22R��, whereas the nonzero harmonics probe

the time 1
�N,2D

cyl =
R�

h/e2 T ln
L2 /LT
2�. The main dependence of the

corresponding length LN,2D
cyl �T−1/2 has the same origin as for

a single ring and reflects that winding trajectories feel fluc-
tuations of the potential over length scale given by the pe-
rimeter �Fig. 16, left�. For lower temperature, trajectories dif-
fuse along the cylinder over length scale much larger than
the perimeter and the WL correction is controlled by a
unique length LN,1D, corresponding to the usual 1D Nyquist
time �N,1D�T−2/3.

IX. CONCLUSION

We have studied the weak localization correction in me-
tallic networks and in a hollow cylinder. This study relies on
a detailed analysis of the winding properties of closed
Brownian trajectories in these systems. We now summarize
our results.

We first recall the behavior of the probability to return to
the starting point after a time t for trajectories conditioned to

wind n rings. In the short time limit t�L2, we have
Pn�x ,x ; t�� pn

1
�4�t

e−�nL�2/4t, where pn depends on the net-
work: pn=1 for the isolated ring, pn= � 2

3 �nNa for the ring con-
nected to Na long wires and pn= �2n−1�!!

2n+1n!
in the chain of rings.

For the square network, there is no close expression but a
systematic expansion may be found in Ref. 16 with the trace
formula of Ref. 70.

At large times t�L2 the typical winding number scales as
nt��t /L2��, where � is a network-dependent exponent. In-
troducing the return probability P�x ,x ; t�=�nPn�x ,x ; t�, we
may write the winding probability as

Pn�x,x;t� �
P�x,x;t�
c2�t/L2�� q� n

c2�t/L2��
 , �126�

where �dxq�x�=1. The dimensionless number c2 ensures that
�dxx2q�x�=1. Since P�x ,x ; t�� t−d/2, where d is the effective
dimensionality of the network, we may also write

Pn�x,x;t� �
1

t�+d/2q� n

t�
 �127�

�L may be reintroduced by dimensional analysis�. The func-
tion q�x� is given for the various networks in Table I, and
represented in Fig. 17. Surprisingly the functions for the con-
nected ring and the plane are very close; they only differ in
the wings when functions are exponentially small.

We have analyzed in details the harmonics of the magne-
toconductance oscillations obtained when decoherence is de-
scribed by a simple exponential relaxation �model A�. In the
limit of large coherence length compared to the perimeter of
the rings, the scaling of the harmonics can be easily under-

stood from the Laplace transform ��̃n��0
�dtPn�x ,x ; t�e−t/L�

2
.

We see that the time scale coincides with t�L�
2 . We deduce

from Eq. �127� that harmonics are of the form

��̃n �
1

L�
d−2+2�	� n

L�
2�
 , �128�

where 	�x� is a dimensionless network-dependent function

TABLE I. Return probability and distribution Qt�n�=
Pn�x,x;t�
P�x,x;t� of

the winding number in the large time limit t�L2. The function
���� is defined in Eq. �41�.

Network P�x ,x ; t� Qt�n� q�x�

1

Na
��t

�NaL

�4�t�1/4q� n�NaL

�4�t�1/4
 �3/4

�2
���4��1/4x�

1

4��t

L
�2t

q� nL
�2t


 1
�2�

e−x2/2

a

4�t
2�3a2

t
q�n2�3a2

t

 �

4�3

1

cosh2� �x
2�3�
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�the perimeter L is easily reintroduced by reminding that ��̃
has dimension of a length�. We may then summarize the
following for each geometry:

�i� For the isolated ring �d=0, �=1 /2�, the form of the
harmonics ��̃n�L�	i.r.�nL /L�� is related to the scaling
nt� t1/2.

�ii� For the connected ring �d=1,�=1 /4�:
��̃n��L�L	c.r.�n�L /L�� can be understood from nt� t1/4.

�iii� For the chain of rings �d=1,�=1 /2�:
��̃n�	chain�nL /L�� reflects nt� t1/2.

�iv� For the square network �d=2,�=1� :

��̃n� L
n 	̃s.n.�nL2 /L�

2� originates from nt� t 
here the har-
monics were not written exactly under the form �128�, but in

terms of the function 	̃�x�=x	�x� in order to emphasize that
harmonics reach a finite value for L�→��.

The precise behaviors for the harmonics �gn are summa-
rized in Table II �we recall that �gn���n apart for the con-
nected ring for which �gn�

L�

la
��n, where la is the length of

the connecting wires�.
For each situation we have also discussed the effect of

decoherence due to electron-electron interaction �model B�,
the dominant phase breaking mechanism at low temperature.
As recalled at the beginning of the paper, this mechanism
requires a refined description: the simple exponential decay
of phase coherence is replaced by a functional of the trajec-
tories, Eqs. �15� and �18�. In networks of quasi-1D wires the
decoherence due to e-e interaction is controlled by the Ny-
quist length LN�T−1/3.

In the “high-temperature” limit LN�L the fact that trajec-
tories with finite winding number and trajectories with wind-
ing n=0 do probe different length scales is responsible for
the emergence of two length scales LN�T−1/3 and Lc�T−1/2


or LN
film�T−1/2 and LN,2D

cyl � �T ln T�−1/2 for the cylinder�.
The models A and B give different dependences in the
phase coherence length: ��̃�A��−L�e−nL/L� and ��̃�B�

�−LNe−n�L / LN�3/2
. The exponential decay of harmonics is al-

most independent of the network.

In the “low-temperature” limit LN�L, all trajectories
probe the same typical scale, irrespective of the winding.
However this length scale depends on the geometry: LN
�T−1/3 for the chains of rings and the hollow cylinder, and

LN
net= �

2�LN
3

3a �1/2ln−1/2�LN /a���T ln 1 /T�−1/2 for the square net-
work. As a function of the phase coherence length, models A
and B predict harmonics of similar form strongly network
dependent. We have compared harmonics as a function of the
phase coherence length for the different networks in Fig. 18
�for model A�.

All results are summarized in Table II. We have plotted
the WL correction to conductances for the three different
networks in Fig. 18.

An experimental verification of these predictions would
be interesting and would confirm our understanding of deco-
herence due to electron-electron interaction in complex ge-
ometries. In particular an interesting and clear experimental
test would be to compare the MC harmonics for the chain of
rings for independent rings and coherent rings �networks of
Fig. 9� in the “low-temperature” limit LN�L. The experi-
mental analysis of the MC harmonics for the square network
in this limit seems more difficult due to the fact that harmon-
ics reach a value independent on the phase breaking mecha-

�� �� �� � � � �

x

��
���

��
���

��
��

��
��

��
��

��
��

��
�	

��
��

��
�


��
��

��
��

��
�

q
(x
)

�
 �� �� � � � 


�

���

���

��


���

��	

FIG. 17. �Color online� Rescaled distribution of the winding
number 
function q�x�� for the connected ring �black continuous
line�, the chain of rings �red dotted line�, and square network �blue
dashed line� in semilog scale. Inset: Same functions in linear scale.
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FIG. 18. �Color online� Comparison between harmonics �gn /g
for different networks in the low temperature regime L��L with
n=1 and n=5. For the connected ring �continuous black line� we
choose la /L=10. The blue dashed line corresponds to the chain of
rings. The result for the square network �dotted red line� has been
multiplied by a factor 10 for visibility.
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nism. Therefore, contrarily to the chains of rings, the MC
harmonics for the square network are less sensitive to the
model of decoherence for large phase coherence length.
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APPENDIX A: A USEFUL PROPERTY OF WINDING
BROWNIAN TRAJECTORIES

The difficulty for computing the path integral �19� lies in
the time nonlocality of the action. In this appendix we show
how it is possible to get rid of time nonlocality in certain
cases, as explained in Refs. 5 and 62. For that purpose we
demonstrate the identity

�
x�0�=x

x�t�=x

Dx�n,N
x�

�exp�−
1

2
�

0

t

d� ẋ2 − �
0

t

d� V„x��� − x�t − ��…�
= �

x�0�=0

x�t�=0

Dx�n,N
x� exp�−
1

2
�

0

t

d� ẋ2 − �
0

t

d� V„x���…� ,

�A1�

where x��� is a Brownian path on the circle �here identified
with the interval 
0,1��. The identity is valid for any symmet-
ric and periodic function: V�−x�=V�x� and V�x+n�=V�x� for
n�Z.

Demonstration for n=0 was given in Refs. 5 and 62,
where we pointed that, for a Brownian bridge on R
x��� ,
0$�$ t 	x�0�=x�t�=0�, we have the following equality in
law:91

TABLE II. Harmonics of MC �gn /g for different networks. In the high-temperature regime L��L,
winding trajectories cannot explore more than a single ring and harmonics do not depend on the network.
Dimensionless constants are �1=�2 /8�1.234, �2=�2	u1	1/4�1.421, �3=2−1/3	u1	1/2�0.801, and �4

= 	u1	1/2�1.009. The various Nyquist lengths are LN�T−1/3, LN
net��T ln 1 /T�−1/2, and LN,2D

cyl ��T ln T�−1/2.

Model A �exp. relax.� Model B �e-e inter.�

Regime L��L:

L�e−nL/L� LNe−�1n�L/LN�3/2 for LN � L

L�
1/2e−nL/L�

LN,2D
cyl

LN,1D
e−nL/LN,2D

cyl
for LN,2D

cyl � LN,1D � L

Regime L��L:

L�
3/2 for n2 � L�/L LN

3/2 for n2 � LN/L

L�
3/2e−n�2L/L� for n2 � L�/L LN

5/4e−�2n�L/LN for n2 � LN/L

ln�L�/nL� for n � L�/L ln�LN/nL� for n � LN/L

L�
1/2e−nL/L� for n � L�/L e−�3nL/LN for n � LN/L

1

n
�1 −

�nL2

16L�
2 ln� L�

2

nL2
� for �n � L�/L idem for L� → LN
net

L�
−1/2e−���/2�nL/L� for �n � L�/L idem for L� → LN

net

ln�L�/nL� for n � L�/L ln�LN,1D/nL� for n � LN,1D/L

L�
1/2e−nL/L� for n � L�/L e−�4nL/LN,1D for n � LN,1D/L
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x��� − x�t − �� =
�law�

x�2�� for 0 $ � $ t/2. �A2�

The proof lies in the fact that we can relate the bridge to
afree Brownian motion �Wiener process� 
W��� ,0$�$ t ,

W�0�=0�: x��� =
�law�

W���− �
t W�t�.

Here we generalize this relation when x��� lives on the
circle 
0,1� and when we constraint the winding number. Let
us unfold the ring in order to work on R. A close path wind-
ing n times around the ring is related to the following path
living on the real axis: 
xn��� ,0$�$ t 	xn�0�=0;xn�t�=n�
that can be written as

xn��� =
�law�

W��� +
�

t

n − W�t�� =

�law�

x0��� + n
�

t
. �A3�

x0��� is the Brownian bridge. It is now easy to show that92

xn��� − xn�t − �� =
�law�

xn�2�� − n for 0 $ � $ t/2. �A4�

Since xn���−xn�t−�� is the argument of the periodic function,
the integer shift can be forgotten. The symmetry V�x�
=V�−x� ensures the equality of contributions of intervals �0

t/2

and �t/2
t . It follows that

�
0

t

d� V„xn��� − xn�t − ��… =
�law��

0

t

d� V„xn���… , �A5�

which demonstrates Eq. �A1�.
Infinite wire. Using Eq. �A1�, we see that the path integral

�20� involves an action local in time,

Pc�x,x� � −
1

2
��̃�x� = �

0

�

dte−�t

� �
x�0�=0

x�t�=0

Dx���exp�− �
0

t

d��1

4
ẋ2 +

1

LN
3 	x���	�� ,

�A6�

that can now be computed. We obtain Pc�0,0�
=−LN

Ai��LN
2 �

2Ai���LN
2 � derived in Ref. 3 �numerical factors are incor-

rect in this reference�.
Isolated ring. The function W�x ,x�� is given by Eq. �E9�.

The path integral �19� can be rewritten as

�
0

�

dte−�t�
x�0�=0

x�t�=0

Dx�n,N
x�

�exp�− �
0

t

d�� ẋ2

4
+

	x	
LN

3 �1 −
	x	
L

�� �A7�

that can be expressed in terms of Hermite functions.5

APPENDIX B: THE FUNCTION �(�)

We analyze several properties of the function �41�, which
we rewrite

���� =
4

�
�3/4 Re�e−i�/4�

R+
dz z2e−���z�� , �B1�

where ��z�=z4+4ze−i�/4 and �= �� /4�4/3. The value of the
function at the origin is ��0�= ��3/4�

��2
.

The asymptotic behavior for ��1 may be studied by
the steepest descent method. ���z�=0 has three solutions
zn=ei�/4+2in�/3, with n=0,1 ,2 �Fig. 19�. An appropriate
contour deformation in the complex plane of the var-
iable z must remain in the region, where Re
��z��%0.
This domain can be easily determined by performing a rota-
tion z=wei�/4: writing w=u+ iv we have Re
��z��=−u4

+6u2v2−v4+4u that vanishes for v= #�3u2#2�2u4+u.
The domain where Re
��z��%0 is represented in Fig.
19. This shows that the contour can only visit z0=ei�/4.
The integration over R+ is replaced by integration over
the segment � from the origin to z0 and the contour C
issuing from z0 and going to infinity �Fig. 19�. Noticing
that ��dz z2e−���z� is purely imaginary, we are left with the
contribution of the contour C only. We now use the steep-
est descent method ����= 4

��3/4 Re
e−i�/4�Cdz z2e−���z��
� 4

��3/4 Re
e−i�/4 1
2� 2�

����z0�e
−���z0��, where the 1 /2 is due to

the fact that the contour issues from the stationary point;
hence

��� � 1� �
2

�6�
��/4�1/3e−3��/4�4/3

�B2�

�note that a factor 1 /2 is missing in Ref. 7�.
Finally the relation to the function q�x� introduced in the

conclusion requires the two integrals �0
�d� ����=1 /�� and

�0
�d� �2����=2.

APPENDIX C: HYPERGEOMETRIC FUNCTION
F( 1

2 ,n+ 1
2 ;n+1;�)

This appendix is devoted to the study of the hypergeomet-
ric function F� 1

2 ,n+ 1
2 ;n+1;��. Our starting point is the in-

tegral representation69

z

0z1

z2

∆
z
C

FIG. 19. �Color online� Appropriate contour deformation in or-
der to estimate �B1�. The dashed area corresponds to the region
where Re
��z��"0.
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B�1

2
,n +

1

2

F�1

2
,n +

1

2
;n + 1;�
 = �

0

1

dt
tn−1/2

��1 − t��1 − �t�
.

�C1�

We recall that the hypergeometric function is regular at the
origin F�� ,� ;� ;0�=1. Note that the Euler � function
B� 1

2 ,n+ 1
2 �=����n+ 1

2 � /n! is well approximated by B� 1
2 ,

n+ 1
2 ���� /n in the large n limit.
In order to analyze the behavior of the hypergeometric

function for �→1 we rewrite the integral of Eq. �C1� as

�
0

1

dt
�1 − t�n−1/2

�t�1 − � + �t�

=
1
��
��

0

1

dt
1

�t2 + �t
+ �

0

1

dt
�1 − t�n−1/2 − 1

�t2 + �t

 ,

�C2�

where �=1 /�−1. The first integral is 2 argsh�1 /���
=ln�4 /��+O���. The second integral reaches a finite limit for
�→0, expressed in terms of the Digamma function69

�0
1du un−1/2−1

1−u = �1�− �n+ 1
2 �. We can show that correction to

this constant is of order � ln���; therefore,

F�1

2
,n +

1

2
;n + 1;�


=
�→1

1

B�1

2
,n +

1

2



� �ln� 4

1 − �

 +  �1� −  �n +

1

2

 + O�� ln ��� .

�C3�

The behavior �C3� only holds for n not too large,
n� �1−��−1. In the opposite case n� �1−��−1�1, the factor
�1− t�n−1/2�e−�n−1/2�t in Eq. �C2� selects an interval of width
1 /n� �1−�� and we can neglect the quadratic term �t2 below
the square root. Therefore Eq. �C2� is ��0

�dt 1
��1−��t e

−�n−1/2�t.
Finally

F�1

2
,n +

1

2
;n + 1;�
 �

�→1

1
�1 − �

�C4�

for n� �1−��−1�1.
We now prove a useful relation between the hypergeomet-

ric function and the MacDonald function �modified Bessel
function�. If �=e−2z/n�1−2z /n, the integral �C2� may be
rewritten as

�
0

n dt

n

�1 −
t

n

n−1/2

� t

n
�2z

n
+

t

n

 ——→

n→�
�

0

�

dt
e−t

�t�2z + t�
. �C5�

We recognize an integral representation of the MacDonald
function.69 Therefore, for z�n, we can write

B�1

2
,n +

1

2

F�1

2
,n +

1

2
;n + 1;e−2z/n
 � ezK0�z� . �C6�

The right-hand side describes the crossover between Eqs.
�C3� and �C4�. We compare the two sides of Eq. �C6� for
different values of n in Fig. 20.

APPENDIX D: LAPLACE EQUATION IN NETWORKS
(SPECTRAL DETERMINANT)

In this appendix we introduce an important tool, the spec-
tral determinant, used to study some properties of the equa-
tion

�� − ��P�x,x�� = ��x − x�� �D1�

in networks.
The spectral determinant is formally defined as

S���=det��−��= n��+En�, where �En� is the spectrum of
the Laplace operator −� �in the presence of a magnetic field,
�→ 
�−2ieA�x��2�. Despite the fact that this operator acts in
a space of infinite dimension, the spectral determinant can be
related to the determinant of a finite size matrix, of dimen-
sion equal to the number of vertices. This matrix encodes all
informations on the network �topology, lengths of the wires,
magnetic field, boundary conditions describing connections
to reservoirs�. Let us label vertices with greek letters. l��

designates the length of the wire ���� and ��� the circulation
of the vector potential along the wire. The topology is en-
coded in the adjacency matrix: a��=1 if � and � are linked
by a wire, a��=0 otherwise. We consider the case where
Laplace operator acts on functions ��x� �i� continuous at the
vertices satisfying �ii� ��a������ �0�=!���, where ����x�
designates the component of the function on the wire ����
and �� its value at the vertex. Self-adjointness of the Laplace
operator is ensured if !��R �more details may be found in
Refs. 29 and 62�. !�=� corresponds to Dirichlet boundary
condition at the vertex and describe the case where � touches
a reservoir through which current is injected in the network.
!�=0 for internal vertices. The interest of mixed boundary
conditions �finite !�� is illustrated in Appendix F. We intro-
duce the matrix

0.01 0.1 1 10 100

0.1

0.2

0.5

1.0

2.0

5.0

z

ezK0�z�

FIG. 20. �Color online� Comparison between the two sides of
Eq. �C6� for n=1, 2, 10, and 100.
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M�� = ����!� + ���
�

a�� coth ��l��
 − a��
��

e−i���

sinh ��l��

,

�D2�

where the a�� constrains the sum to run over neighboring
vertices. Then28,29

S��� =  
����

sinh ��l��

��
det M , �D3�

where the product runs over all wires. Despite the spectral
determinant encodes the spectral information, it is also pos-
sible to extract some local information, like P�x ,x�, by small
modifications of the matrix. This has been used in Ref. 7 and
is briefly discussed in Appendix F.

It is useful to remark that the matrix M can be used to
express P�x ,x�� when x and x� coincides with nodes �this is
always possible to introduce a vertex anywhere without
changing the properties of the network�

P��,�� = �M−1���. �D4�

WL correction in regular networks. In large regular net-
works connected in such a way that currents are uniformly
distributed in the wires, we can assume that weights attrib-
uted to the wires of the networks in Eq. �8� are equal. In this
case, a uniform integration of the Cooperon Pc�x ,x�
= �x	 1

�−� 	x� in the network leads to a meaningful quantity
�relevant experimentally�. The Cooperon integrated uni-
formly is directly related to the spectral determinant27,29

�
network

dx ��̃�x� = − 2
�

��
ln S��� . �D5�

This equation provides a very efficient way for calculating
the WL correction in arbitrary networks, when uniform inte-
gration of Cooperon is justified.

WL correction in arbitrary networks. In the most general
case, Eq. �8� requires one to construct the Cooperon in each
wire. A general expression was provided in Ref. 30, however
it is useful to notice that Pc�x ,x�=− 1

2��̃�x� can also be ob-
tained from a spectral determinant for a modified boundary
condition at point x. It was shown in Refs. 7 and 62 that if
we introduce mixed boundary conditions with a parameter !x
at x, then

��̃�x� = − 2
�

�!x
ln S�!x�	���	!x=0. �D6�

APPENDIX E: CLASSICAL
RESISTANCE/CONDUCTANCE

We calculate the resistance between two vertices of an
arbitrary network. We consider a network of wires of lengths
l�& with same sections s. In this case the conductance of the
wire �& is given by �0s / l�&. We introduce the matrix

�M0��& = ��&�
'

a�'

l�'

−
a�&

l�&

, �E1�

whose matrix elements coincide with the conductances of the
wires �up to the factor �0s�. This matrix coincides with the
matrix �D2� if all fluxes are set to zero and the limit �→0 is
taken and moreover with !�=0, ∀� for an isolated network.

We now consider the situation where we inject a current
at the vertex �. This current exits at vertex � �see Fig. 21�. If
we denote by V� the potential at �, Kirchhoff law at vertex �
takes the form

�0s�
&

�M0��&V& = I
��,� − ��,�� . �E2�

Potential is therefore given by

V� =
I

�0s

�M0

−1��� − �M0
−1���� . �E3�

Note that the matrix M0 is not inversible; it is explained
below how to give a precise meaning to this expression.
We define the resistance between points � and � as
R��= �V�−V�� / I. Therefore

R�� =
2

�0s
� �M0

−1��� + �M0
−1���

2
− �M0

−1���� . �E4�

Using Eq. �D4� we see that we can express the resistance in
terms of the solution Pd of the equation −�Pd=�,

R�x,x�� =
2

�0s
�Pd�x,x� + Pd�x�,x��

2
− Pd�x,x���

=
2

�0s
W�x,x�� . �E5�

This demonstrates that the function W�x ,x�� defined by Eq.
�17� is indeed the equivalent resistance between points x
and x�.

Remark: M0 is not inversible. It is easy to check that

�
�

�M0��& = 0. �E6�

Kernel of the matrix is the vector �1,1,…,1�. Physically Eq.
�E6� ensures: �i� that sum of all currents arriving at vertex &
is zero, �ii� currents are zero if all potentials are equal �equi-

�

I

�

I

FIG. 21. Injection of current in a network �here a regular square
network�.
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librium�. This problem can be overcome easily by noticing
that only differences of inverse matrix elements have ap-
peared, in Eqs. �E3� and �E4�. We can always inverse the
matrix M0 in the space orthogonal to the vector �1,1,…,1�
and compute differences of such matrix elements. This is
how Eqs. �E3�–�E5� must be understood.

In practice, an easier way to compute such differences is
to regularize the calculation by computing the inverse of
matrix M for finite � �or at least one finite !�� and take the
limit �→0 �or !�→0� after having computed the difference
of inverse matrix elements,

�M0
−1��� − �M0

−1��� = lim
�→0


M��
−1 − M��

−1 � . �E7�

Note that det M�0 for ��R+* since Spec����R−.
This point is related to the fact that was already men-

tioned in the continuum limit in order to construct the func-
tion W�x ,x�� �in Sec. VIII B 1 or in Appendix F�: Equation
�E7� is the analog of Eq. �108�. In the continuum this prob-
lem is related to the fact that the Laplace operator is not
inversible in the space of functions satisfying Neumann
boundary conditions corresponding to an isolated conductor.

Example: function W in an isolated ring. The relation
between the function W and the resistance may be used in
order to construct easily W. Let us consider the case of a ring
of perimeter L. When the ring is connected at two wires at x
and x�, the resistance R�x ,x�� corresponds to the one of two
wires of lengths 	x−x�	 and L− 	x−x�	 put in parallel. We
straightforwardly recover the function obtained in Ref. 5,

Wring�x,x�� =
1

2

1

1

	x − x�	
+

1

L − 	x − x�	

, �E8�

Wring�x,x�� =
1

2
	x − x�	�1 −

	x − x�	
L


 . �E9�

Note that if we consider a ring connected at reservoirs
through arms of finite length, the function W�x ,x�� inside the
ring is modified,4,5 since its construction needs to consider a
four-terminal device. In the limit of infinitely long arms we
can neglect currents flowing through the leads and we re-
cover the result of the isolated ring �appendix of Ref. 5�.

Classical conductance. It is interesting to compare the
formula obtained for the resistance with the one obtained for
the conductance matrix of a multiterminal network.30 We
first stress that we consider two different situations. Equa-
tions �E4� and �E5� give the potentials when the currents
injected at vertex � and extracted at vertex � are fixed �Fig.
21�. On the other hand, a conductance matrix allows to de-
termine the currents through contacts when the potentials at
these contacts are fixed �Fig. 22�.

We consider a multiterminal network, connected to exter-
nal contacts through which current is injected at a set of
vertices indicated with primes: �� ,�� , . . .. The connection is
accounted for by introducing parameters !��=� added to the
matrix M0, which now become inversible. These parameters
describe Dirichlet conditions for the diffusion equation and

permit to inverse the Laplace operator. The transport through
the network is characterized by a conductance matrix whose
elements are given by30

G���� = −
�0s

l���l���
�M0

−1��� = −
�0s

l���l���
Pd��,�� .

�E10�

At first sight diffuson Pd�� ,�� 
i.e., inverse matrix element
�M0

−1���� is related to both the conductance and the resis-
tance. Note however that the matrix M0 
and the corre-
sponding diffuson Pd�x ,x��� in Eq. �E10� does account for
the boundary conditions �Dirichlet boundary conditions at
contacts, i.e., primed vertices� whereas M0 
and Pd�x ,x��� in
Eqs. �E4� and �E5� describe the isolated network.

APPENDIX F: SOLUTION OF THE DIFFUSION EQUATION
IN SOME PARTICULAR NETWORKS

We consider the solution of the diffusion Eq. �D1� for the
networks studied in this article.

1. The ring with one or several arms

We consider a ring of perimeter L attached to an arm of
length b connected to a reservoir �i.e., with Dirichlet bound-
ary condition at its end� and submitted to a magnetic field.
The spectral determinant is7

S��� =
2
��

sinh ��b 
cosh ��Leff − cos �� , �F1�

where the effective perimeter is given by

cosh ��Leff = cosh ��L +
1

2
coth ��b sinh ��L . �F2�

A systematic way for obtaining the spectral determinant of
two subgraphs glued at one vertex from the spectral determi-
nants of the subgraphs has been derived in Ref. 93. This
allow recovering easily Eq. �F1�.

�i� Introducing mixed boundary conditions at the node
�vertex 0� we easily obtain S�!0����=

!0

� sinh ��L sinh ��b
+S��� from Eq. �D3�. Using Eq. �D6�, and performing
a Fourier transform, we get the Cooperon Pc

�n��0,0�
=− 1

2��̃n�0� at the node7

ρ

α’ α µ

µ’

ν

ν

β β

’

’

’ρ

FIG. 22. A multiterminal network. Wavy lines represent contacts
through which current is injected. Contacts correspond to vertices
with primed labels.

QUANTUM OSCILLATIONS AND DECOHERENCE DUE TO… PHYSICAL REVIEW B 80, 205413 �2009�

205413-25



Pc
�n��0,0� =

1

2��

sinh ��L

sinh ��Leff

e−n��Leff. �F3�

In the weakly coherent limit we find Leff�L+L� ln�3 /2�,
whence Pc

�n��0,0�� 1
2��

� 2
3 �n+1e−n��L.

In the limit ��L�1 the effective perimeter is Leff
��−1/4L1/2. We have7,62

Pc
�n��0,0� �

�L

2�1/4e−n�L�1/4
. �F4�

�ii� In order to calculate the harmonics of the Cooperon in
the arm 
x is the distance from the ring, see Fig. 23�a��, we
have to consider the spectral determinant for the graph with
mixed boundary conditions at x, with parameter !x,

S�!x���� = S��� +
!x

�
�sinh L

sinh2�b − x�
sinh b

+ 2 sinh x sinh�b − x��cosh Leff − cos ���
�F5�

�for shorter notations we have omitted �� in hyperbolic func-
tions�. From Eq. �D6� we obtain

Pc
�n��x,x� = �n,0

1
��

sinh ��x sinh ���b − x�
sinh ��b

+ � sinh ���b − x�
sinh ��b


2

Pc
�n��0,0� �F6�

for x�arm 
Fig. 23�a��. We recognize the first term as the
result obtained for a wire of length b connected to reservoirs
�i.e., with Dirichlet boundaries�. In the limit b→� we have
Pc

�n��x ,x�� Pc
�n��0,0�e−2��x �for n�0�.

�iii� If x is inside the ring 
Fig. 23�b�� the modified spec-
tral determinant reads

S�!x���� = S��� +
!x

�

sinh x sinh�L − x�cosh b + sinh b sinh L�

�F7�

and from Eq. �D6� the Cooperon is therefore

Pc
�n��x,x� = �1 + coth ��b

sinh ��x sinh ���L − x�
sinh ��L

�Pc
�n��0,0�

�F8�

for x� ring 
Fig. 23�b��.

If L��L we have Pc
�n��x ,x��
 3

2 − 1
2e−2��x�Pc

�n��0,0� for x
"L /2. In the bulk �for x and L−x�L�� we have Pc

�n��x ,x�
� 3

2 Pc
�n��0,0� �Fig. 24�, where the factor 3

2 corresponds to the
ratio of coordination numbers at 0 and at x.

In the opposite limit L�L��b the Cooperon is homoge-
neous inside the ring, as expected.

From one to Na arms. In the regime L��L, we have seen
that the presence of one arm is responsible for factor � 2

3 �n

originating from the n crossings of the vertex. We immedi-
ately deduce that the Cooperon in the ring is Pc

�n��x ,x�
� 1

2��
� 2

3 �nNae−n��L.
In order to study the regime L��L, instead of considering

the network of Fig. 7 we discuss the case where all arms
are attached at the same point in the ring. The calculation
is more simple in this case. The two situations were studied
in Ref. 7, where it was shown that the Cooperons for the
two networks only slightly differ in the regime L��L
and are equal in the regime L��L of interest now. The
effective length is now given by cosh ��Leff=cosh ��L

+
Na

2 sinh ��L coth ��b. The structure �F3� still holds. When
L�L��b we find Leff��−1/4�NaL; therefore Pc

�n��x ,x�
� 1

2
�L�L /Nae−n�NaL/L�, whose inverse Laplace transform

leads to Eq. �40�. This Na dependence may be more simply
obtained by noticing that, given the winding probability
Pn�x ,x ; t� for one arm, the one for Na arms is obtained
thanks to the substitution n→nNa and L→L /Na.

2. Necklace of rings

We analyze the solution of the diffusion equation in a
chain of Nr identical rings of perimeter L. Rings are attached
in such a way that the two arms joining two vertices are
symmetric. The chain is closed in order to form a necklace
for simplicity; as soon as the total length is smaller than L�,
the results are insensitive to boundary conditions: periodic
�isolated necklace� or Dirichlet �chain connected to external
contacts�. Let us label the vertices joining consecutive rings
with greek letters � ,�� �1, ... ,Nr�. The matrix introduced
in Appendix D has the simple form M��

= 2��

sinh���L/2� 
���2 cosh���L /2�−a�� cos�� /2��, where � is the
reduced flux per ring. With our convention the adjacency

λ1=θ

b 1
0

L
x

λ1=θ

b 1
0

L
x

(b)(a)

FIG. 23. �Color online� A ring with one wire. We choose a
Dirichlet boundary condition at the vertex 1 for simplicity �!1=��.

�1

0

1

2

3

�1.0
�0.5

0.0
0.5

1.0
0.0

0.5

1.0

1.5

Pc
�n��x,x�

Pc
�n��0,0�

FIG. 24. �Color online� x dependence of the Cooperon Pc
�n��x ,x�

in the connected ring for L��L.
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matrix reads a��=��,�+1+��,�−1. Its spectrum of eigenvalues
is 2 cos�2n� /Nr� with n� �1, ... ,Nr�, therefore the spectral
determinant reads

S��� = �4 sinh���L/2�
��


Nr

�  
n=1

Nr �cosh���L/2� − cos��/2�cos
2�n

Nr

 . �F9�

We replace the product by a sum by considering the loga-
rithm. The sum can then be computed in the limit Nr→�,

S��� =
Nr→�

�2	cos��/2�	sinh���L/2�
��

eargch
cosh���L/2�/	cos��/2�	�
Nr

.

�F10�

We now consider P�x ,x�� when arguments coincide with ver-
tices,

P��,�� = �M���
−1 =

sinh ��L/2
Nr4��

�
n=1

Nr e2i�n/Nr��−��

cosh ��L/2 − cos
2�n

Nr

=
Nr→�

1

4��
e−	�−�	��L/2. �F11�

We introduce the notation x̃��x , f� to locate points in the
chain, where x is the coordinate along the axis �see Fig. 25�;
in the nth ring x� 
nL /2, �n+1�L /2�. The discrete index f
� �u ,d� indicates whether the point is in the upper branch or
the lower branch.

If x̃ and x̃� are arbitrary positions we can consider the
following several situations:

�i� x̃ and x̃� belong to different rings. The Cooperon is

P�x̃, x̃�� �
1

4��
e−��	x−x�	, �F12�

which is half of the result for the infinite line.
�ii� x̃ and x̃� belong to the same ring,

P�x̃, x̃�� �
�→0

1

4��
. �F13�

We conclude that in time representation

P�x̃, x̃�;t� �
t�L2

1

2

1
�4�t

e−�x − x��2/4t �F14�

�the relation is exact when x̃ and x̃� belong to different rings�.
The 1 /2 corresponds to the probability to end in one of

the two arms of the rings. It ensures normalization:
�dx̃P�x̃ , x̃� ; t��� f=u,d�dxP�x̃ , x̃� ; t�=1.

The function W�x ,x��. Expression �F11� can be used to
construct Pd�x ,x�� by taking the limit �→0. We find for the
function entering into description of dephasing

W�x,x�� =
1

4
	x − x�	 =

1

2
Wwire �F15�

for x ,x� in different rings, and

W�x,x�� =
1

2
	x − x�	�1 −

	x − x�	
L


 = Wring �F16�

for x ,x��same ring. In Eq. �F15� positions are measured
along an axis along the chain; the result is half of the result
for a wire. As it has been already noticed this result can be
understood thanks to the relation �E5�: when the number of
wires between each node is doubled, the resistance is divided
by a factor of 2. In Eq. �F16� coordinates are relative to a
unique axis inside the ring �it is understood that the expres-
sion is periodic�; the result is exactly the result obtained for
an isolated ring. Once again interpretation is easy: for an
infinitely long necklace, when two external wires are
plugged inside a ring, no current can flow out of the ring and
resistance R�x ,x�� is not affected by the remaining rings.

3. Square network

We construct the solution of the diffusion equation in the
square network. We use Eq. �D4� to express P�x ,x�� when
the two coordinates coincide with nodes of the network. In
this paragraph, nodes are labelled with a couple of integers
�→ �n ,m��R� . The matrix M has the structure

�M�R� ,R�� =
��

sinh ��a

4 cosh ��a�R� ,R�� − aR� ,R��� . �F17�

This matrix is easily inverted

�M−1�R� ,R�� =
sinh ��a

2��

� �
BZ

dQ�

�2��2

eiQ� ·�R� −R���

2 cosh ��a − cos Qx − cos Qy

,

�F18�

where integral runs over wavevectors of the Brillouin zone.
If we are interested in P�x ,x� ; t� in the large time limit,
t�a2, this corresponds to consider �a2�1. In this regime
the above integral is dominated by small Q� and we get

P�R� ,R� �� = �M−1�R� ,R�� �
a

2
� dQ�

�2��2

eiQ� ·�R� −R���

�a2 +
1

2
Q� 2

=
a

2
�

0

�

dte−�t 1

2�t
e−�a2/2t��R� − R���2

, �F19�

where integral over Q� has been extended to R2. We expect

L/2 L0

x

x~

��... ...

FIG. 25. Infinite chain of rings.
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P�x ,x� ; t� to vary smoothly on the scale of the lattice spac-
ing; therefore we may write

P�x,x�;t� �
t�a2

a

2

1

2�t
e−�x − x��2/2t, �F20�

where �x−x�� designates the distance in R2 between
the two points x and x� of the square network. This re-
sult calls for two remarks. First, we see that the fact that
the diffusion is constrained in the 1D wires forming the
square network leads to a continuum limit with a renormal-
ized diffusion constant D*=1 /2, if the diffusion constant
is D=1 in the wire �more generally D*=1 /d, where d is
the effective dimensionality of the network�. Second, the
probability presents a prefactor 1 /2 of similar origin than
the one in Eq. �F14�, ensuring normalization condition.
Each elementary plaquette, labeled by R� ��n ,m�, contains
two wires. Therefore each wire of the network can be la-
belled with R� and an index f taking two values �for horizon-
tal or vertical wires�. We check that Eq. �F21� is correctly
normalized: �networkdxP�x ,x� ; t�=�R�� f�wire�R� ,f�dxP�x ,x� ; t�
��R�2aP�x ,x� ; t��2a�R�

a
2

1
2�t e

−�a2/2t��R� − R���2
�1.

The generalization of Eqs. �F18�–�F20� to the other regu-
lar planar networks can be done. We obtain

P�x,x�;t� �
t�a2

1

2
tan��

z

 a

2�t
e−�1/2t��x−x��2

, �F21�

where the dimensionless factor 1
2 tan �

z , where z is the coor-
dination number of the lattice, has the interpretation of the
area of the Wigner-Seitz elementary cell Az�1+�z,6�, where
Az is defined in the next appendix, divided by the number of
bonds per cell.

APPENDIX G: MC OF PLANAR REGULAR NETWORKS

1. Planar regular networks

We apply the formulas �D3� and �D5� to the case of infi-
nite planar regular networks. Let us denote by z the coordi-
nation number of the network. The plane can be covered by
only three different tillings: the triangular lattice �z=6�, the
square lattice �z=4�, and the honeycomb lattice �z=3�.

Let us mention a few properties of regular tillings of flat
surfaces.

�i� The lattice of coordination number z is a tilling by
regular polygons with p sides. p is related to the coordination
number by94 �z−2��p−2�=4.

�ii� The area of a regular p gone of side a is Az

=a2 1
4 p cot �� / p�=a2 z

2�z−2� tan�� /z�.
�iii� If boundary effects are neglected, the number of

bonds B and the number of vertices V of the planar network
are related by 2B=zV �z bonds issue from each vertex and
each bond touch two vertices�.

The matrix �D2� takes the form M=
��

sinh ��a
N, where the

matrix N is given by

N�� = ��� z cosh ��a − a�� e−i���, �G1�

where reduced fluxes ��� describe a uniform magnetic field
B. We use Eqs. �D3� and �D5� to express the WL correction

��̃=− 2
Vol

�
�� ln S���, where the volume is related to the num-

ber of bonds Vol=Ba,

��̃��� = �2

z
− 1
L��coth

a

L�

−
L�

a



−
z

B
L� sinh

a

L�

Tr� 1

N��,��� . �G2�

�=4�
 /
0 is the reduced flux per elementary plaquette. The
computation of this expression requires the knowledge of the
spectrum of the matrix N, i.e., of a��e−i��� �Hofstadter
problem95�.

2. Continuum limit

We study the continuum limit: for L��a the WL correc-
tion probes large scales. Moreover when the flux per cell is
much smaller that the flux quantum, 
�
0, the result for the
planar network coincide with the result for a plane. Let us
show that this is indeed the case. We note that the action
of the adjacency matrix a�� on a smooth function can
be replaced by the Laplacian: a��→ 1

4za2�+z. Therefore
in the presence of a weak magnetic field a��e−i���

→ 1
4za2��−2ieA�2+z involves the covariant derivative. The

spectrum of this operator is the Landau spectrum shifted by
−z: Spec�−a��e−i������za2eB�n+1 /2�−z 	n�N�, where
each Landau level has a degeneracy dLL= 1

�eBArea, “Area”
being the total area occupied by the planar network.

In the limit L��a and ��1, Eq. �G2� is dominated by the
trace which is itself dominated by the bottom of the spectrum
of −a��e−i��� and it rewrites

��̃ � − a
z

B

eBArea

�
�
n=0

Nc 1

z
a2

2L�
2 + za2eB�n + 1/2�

+ cste,

�G3�

where we have introduced a cutoff Nc corresponding to the
number of the Landau level for which continuum limit fails:
za2eB�Nc+1 /2��z, the width of the spectrum of the adja-
cency matrix. This gives Nc�1 / �a2eB��
0 / �Ba2�. Using
that the total number of bonds is related to the number of
elementary plaquettes by B= 2z

z−2
1
2 � �no. of plaquettes� we

find Area= a2

2 tan�� /z�B. Finally the WL correction may be
expressed with the Digamma function69

��̃�� � 1� �
a

2�
tan��

z

� �1

2
+


0

4�BL�
2 
 − ln� 
0

Ba2
�
+ cste. �G4�

This result indeed coincides with the result for a plane, Eq.
�91�, apart for a factor 2 in the argument of Digamma func-
tions. We think that it is worth devoting a small paragraph to
this point since it is related to some interesting property of
the continuum limit of the result for the networks.

The additional factor of 2 and the continuum limit. As
mentioned in Sec. VII the WL correction in the network can
be written with a path integral as
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��̃��� = − 2�
0

�

dt e−t/L�
2

� �
x�0�=x

x�t�=x

Dx���exp�−
1

4
�

0

t

d� ẋ2 + i�N
x����� ,

�G5�

where N
x���� is the �algebraic� number of elementary
plaquettes surrounded the trajectories. When one is interested
in large time scale properties �t�a2�, Eq. �F21� shows that
the path integral over Brownian paths x��� in the square net-
work can be replaced by a path integral over planar Brown-
ian curves r���� as

�
x����network

Dx��� exp�−
1

4
� d� ẋ2


→ a
1

2
tan��

z

�

r�����plane
Dr���� exp�−

1

2
� d� r�̇2
 .

�G6�

�N
x����=2eBA
x���� coincides with the magnetic flux en-
closed by the trajectory multiplied by 2e, where A
x���� is
the algebraic area enclosed by the curve �A
x����
=a2N
x���� for the square network�. Finally we can rewrite
Eq. �G5� as

��̃�� � 1�

� − a tan��

z

�

a2

�

dt e−t/L�
2

��
r��0�=r�

r��t�=r�

Dr���� exp�−
1

4D*�0

t

d� r�̇2 + 2ieBA
r������
�G7�

with D*=1 /2. Then we can use the well-known result2,13

�91� to get ��̃���1�� a
2� tan� �

z �
 � 1
2 +


0

8�BD*L�
2
�−ln�


0

Ba2 ��
+cste, which precisely coincides with Eq. �G4�.

3. Square network

The WL correction can be expressed more explicitly for
rational fluxes. We recall briefly a derivation due to Douçot
and Rammal26 for the case of a square network of dimension
V=Nx�Ny. We start from

��̃��� = −
L�

2 �coth���a� −
1

��a

+ 4 sinh���a�
1

NxNy
Tr� 1

N��,���� . �G8�

We label the vertices ���n ,m�, n for the position along the

horizontal direction and m along the vertical direction. We
can choose a Landau gauge: ���=m� for horizontal wires,
���n ,m� and ���n+1,m�, and ���=0 for vertical wires.

The computation of the MC for a square network submit-
ted to a magnetic field requires to consider the problem of
determination of the spectrum of H��=−a��e−i��� �Hof-
stadter problem�. In the Landau gauge where the flux is
put along the n axis the solution of H =� can be
written as  n,m=	meikxn. We obtain the Harper equation
	m−1+ 
�+2 cos�kx+m���	m+	m+1=0.

If the flux is rational �p,q=2�p /q with p ,q�N, the
Harper equation is periodic with periodicity q. Therefore,
writing m=r+qs with s�Z and r� �1, . . . ,q� we can look
for solutions of the form 	m=�re

ikys. The wave function �r
is solution of a linear system Dq�=0 where the hermitian
q�q-matrix Dq is defined by

!Dr,r = � + 2 cos�kx + 2�
rp

q

 , for r = 1, . . . ,q ,

Dr+1,r = 1, for r = 1, . . . ,q − 1,

Dq,1 = eiky .
"
�G9�

The secular equation det Dq=0 gives the q energy bands de-
noted �r�k��. Interestingly the secular equation can be rewrit-
ten as det Dq= �−1�q
Pp,q���−2�cos qkx+cos ky��=0, where
Pp,q��� is a polynomial of degree96 q. For example, P1,1���
=−�, P1,2���=�2−4, P1,3���=−�3+6�, etc.

The weak localization correction involves

1

NxNy
Tr� 1

N��,�p,q�� = �
0

2� d2k�

�2��2

1

q
�
r=1

q
1

4 cosh���a� + �r�k��

�G10�

therefore

1

NxNy
Tr� 1

N��,�p,q��
=

1

q
�

0

2� d2k�

�2��2

Pp,q� „4 cosh���a�…

Pp,q„4 cosh���a�… − 2 cos kx − 2 cos ky

,

�G11�

where we have used the equality �r=1
q 1

�−�r
= P����

P��� , valid for a
polynomial of degree q: P���= r=1

q ��r−��. Integration over
k� leads to the result �75� of Douçot and Rammal.
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